Cardiac disease in Cushing's syndrome. Emphasis on the role of cardiovascular magnetic resonance imaging.
Cardiac magnetic resonance imaging
Cardiomyopathy
Coronary microvascular disease
Cushing’s Syndrome
Left ventricular hypertrophy
Subclinical heart failure
Journal
Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444
Informations de publication
Date de publication:
21 Dec 2023
21 Dec 2023
Historique:
received:
02
08
2023
accepted:
22
11
2023
medline:
22
12
2023
pubmed:
22
12
2023
entrez:
22
12
2023
Statut:
aheadofprint
Résumé
Cushing's Syndrome (CS) is associated with increased cardiovascular morbidity and mortality. In endogenous CS, cardiovascular mortality remains increased for up to 15 years post remission of hypercortisolism. Similarly, patients with exogenous CS have 4-fold increased incidence of cardiovascular events, regardless of pre-existing cardiovascular disease (CVD). To present the pathophysiology, prognosis, clinical and imaging phenotype of cardiac disease in CS. A Pubmed search for cardiac disease in CS over the last 20 years was conducted using combinations of relevant terms. Preclinical and clinical studies, as well as review papers reporting on subclinical heart failure (HF), cardiomyopathy, coronary heart disease (CHD), and cardiovascular imaging were selected. Cardiac disease in CS is associated with direct mineralocorticoid and glucocorticoid receptor activation, increased responsiveness to angiotensin II, ectopic epicardial adiposity, arterial stiffness and endothelial dysfunction, as well as with diabetes mellitus, hypertension, hyperlipidemia, obesity and prothrombotic diathesis. Subclinical HF and cardiomyopathy are principally related to direct glucocorticoid (GC) effects and markedly improve or regress post hypercortisolism remission. In contrast, CHD is related to both direct GC effects and CS comorbidities and persists post cure. In patients without clinical evidence of CVD, echocardiography and cardiac magnetic resonance (CMR) imaging reveal left ventricular hypertrophy, fibrosis, diastolic and systolic dysfunction, with the latter being underestimated by echocardiography. Finally, coronary microvascular disease is encountered in one third of cases. Cardiovascular imaging is crucial in evaluation of cardiac involvement in CS. CMR superiority in terms of reproducibility, operator independency, unrestricted field of view and capability of tissue characterisation makes this modality ideal for future studies.
Sections du résumé
BACKGROUND
BACKGROUND
Cushing's Syndrome (CS) is associated with increased cardiovascular morbidity and mortality. In endogenous CS, cardiovascular mortality remains increased for up to 15 years post remission of hypercortisolism. Similarly, patients with exogenous CS have 4-fold increased incidence of cardiovascular events, regardless of pre-existing cardiovascular disease (CVD).
OBJECTIVE
OBJECTIVE
To present the pathophysiology, prognosis, clinical and imaging phenotype of cardiac disease in CS.
METHODS
METHODS
A Pubmed search for cardiac disease in CS over the last 20 years was conducted using combinations of relevant terms. Preclinical and clinical studies, as well as review papers reporting on subclinical heart failure (HF), cardiomyopathy, coronary heart disease (CHD), and cardiovascular imaging were selected.
RESULTS
RESULTS
Cardiac disease in CS is associated with direct mineralocorticoid and glucocorticoid receptor activation, increased responsiveness to angiotensin II, ectopic epicardial adiposity, arterial stiffness and endothelial dysfunction, as well as with diabetes mellitus, hypertension, hyperlipidemia, obesity and prothrombotic diathesis. Subclinical HF and cardiomyopathy are principally related to direct glucocorticoid (GC) effects and markedly improve or regress post hypercortisolism remission. In contrast, CHD is related to both direct GC effects and CS comorbidities and persists post cure. In patients without clinical evidence of CVD, echocardiography and cardiac magnetic resonance (CMR) imaging reveal left ventricular hypertrophy, fibrosis, diastolic and systolic dysfunction, with the latter being underestimated by echocardiography. Finally, coronary microvascular disease is encountered in one third of cases.
CONCLUSION
CONCLUSIONS
Cardiovascular imaging is crucial in evaluation of cardiac involvement in CS. CMR superiority in terms of reproducibility, operator independency, unrestricted field of view and capability of tissue characterisation makes this modality ideal for future studies.
Identifiants
pubmed: 38129722
doi: 10.1007/s12020-023-03623-0
pii: 10.1007/s12020-023-03623-0
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
L.K. Nieman, B.M.K. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart, V.M. Montori, H. Edwards, The diagnosis of Cushing’s syndrome: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008). https://doi.org/10.1210/jc.2008-0125
doi: 10.1210/jc.2008-0125
pubmed: 18334580
pmcid: 2386281
L. Fardet, B. Fève, Systemic glucocorticoid therapy: A review of its metabolic and cardiovascular adverse events. Drugs 74, 1731–1745 (2014). https://doi.org/10.1007/s40265-014-0282-9
doi: 10.1007/s40265-014-0282-9
pubmed: 25204470
O.A. Hakami, S. Ahmed, N. Karavitaki, Epidemiology and mortality of Cushing’s syndrome. Best Pract.Res. Clin. Endocrinol. Metabol. 35, (2021). https://doi.org/10.1016/j.beem.2021.101521
R. Pivonello, A.M. Isidori, M.C. De Martino, J. Newell-Price, B.M.K. Biller, A. Colao, Complications of Cushing’s syndrome: State of the art. Lancet Diabetes Endocrinol. 4, 611–629 (2016). https://doi.org/10.1016/S2213-8587(16)00086-3
doi: 10.1016/S2213-8587(16)00086-3
pubmed: 27177728
A.M. Isidori, C. Graziadio, R.M. Paragliola, A. Cozzolino, A.G. Ambrogio, A. Colao, S.M. Corsello, R. Pivonello, The hypertension of Cushing’s syndrome: Controversies in the pathophysiology and focus on cardiovascular complications. J. Hypertens. 33, 44–60 (2015). https://doi.org/10.1097/HJH.0000000000000415
doi: 10.1097/HJH.0000000000000415
pubmed: 25415766
pmcid: 4342316
M. Kadmiel, J.A. Cidlowski, Glucocorticoid receptor signaling in health and disease. Trends Pharm. Sci. 34, 518–530 (2013). https://doi.org/10.1016/j.tips.2013.07.003
doi: 10.1016/j.tips.2013.07.003
pubmed: 23953592
E.B. Geer, W. Shen, D. Gallagher, M. Punyanitya, H.C. Looker, K.D. Post, P.U. Freda, MRI assessment of lean and adipose tissue distribution in female patients with Cushing’s disease. Clin. Endocrinol. (Oxf.) 73, 469–475 (2010). https://doi.org/10.1111/j.1365-2265.2010.03829.x
doi: 10.1111/j.1365-2265.2010.03829.x
pubmed: 20550536
A.G. Rockall, S.A. Sohaib, D. Evans, G. Kaltsas, A.M. Isidori, J.P. Monson, G.M. Besser, A.B. Grossman, R.H. Reznek, Computed tomography assessment of fat distribution in male and female patients with Cushing’s syndrome. Eur. J. Endocrinol. 149, 561–567 (2003)
doi: 10.1530/eje.0.1490561
pubmed: 14640998
C. Scaroni, M. Zilio, M. Foti, M. Boscaro, Glucose metabolism abnormalities in cushing syndrome: from molecular basis to clinical management. Endocr. Rev. 38, 189–219 (2017). https://doi.org/10.1210/er.2016-1105
doi: 10.1210/er.2016-1105
pubmed: 28368467
M. Fleseriu, R. Auchus, I. Bancos, A. Ben-Shlomo, J. Bertherat, N.R. Biermasz, C.L. Boguszewski, M.D. Bronstein, M. Buchfelder, J.D. Carmichael, F.F. Casanueva, F. Castinetti, P. Chanson, J. Findling, M. Gadelha, E.B. Geer, A. Giustina, A. Grossman, M. Gurnell, K. Ho, A.G. Ioachimescu, U.B. Kaiser, N. Karavitaki, L. Katznelson, D.F. Kelly, A. Lacroix, A. McCormack, S. Melmed, M. Molitch, P. Mortini, J. Newell-Price, L. Nieman, A.M. Pereira, S. Petersenn, R. Pivonello, H. Raff, M. Reincke, R. Salvatori, C. Scaroni, I. Shimon, C.A. Stratakis, B. Swearingen, A. Tabarin, Y. Takahashi, M. Theodoropoulou, S. Tsagarakis, E. Valassi, E.V. Varlamov, G. Vila, J. Wass, S.M. Webb, M.C. Zatelli, B.M.K. Biller, Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 9, 847–875 (2021). https://doi.org/10.1016/S2213-8587(21)00235-7
doi: 10.1016/S2213-8587(21)00235-7
pubmed: 34687601
pmcid: 8743006
E. Gomez-Sanchez, C.E. Gomez-Sanchez, The multifaceted mineralocorticoid receptor. Compr. Physiol. 4, 965–994 (2014). https://doi.org/10.1002/cphy.c130044
doi: 10.1002/cphy.c130044
pubmed: 24944027
pmcid: 4521600
A. Coulden, R. Hamblin, J. Wass, N. Karavitaki, Cardiovascular health and mortality in Cushing’s disease. Pituitary 25, 750–753 (2022). https://doi.org/10.1007/s11102-022-01258-4
doi: 10.1007/s11102-022-01258-4
pubmed: 35869339
pmcid: 9587928
E.V. Varlamov, F. Langlois, G. Vila, M. Fleseriu, Cardiovascular risk assessment, thromboembolism, and infection prevention in Cushing’s syndrome: A practical approach. Eur. J. Endocrinol. 184, R207–R224 (2021). https://doi.org/10.1530/EJE-20-1309
doi: 10.1530/EJE-20-1309
pubmed: 33539319
L.K. Nieman, Hypertension and cardiovascular mortality in patients with cushing syndrome. Endocrinol. Metab. Clin. North Am. 48, 717–725 (2019). https://doi.org/10.1016/j.ecl.2019.08.005
doi: 10.1016/j.ecl.2019.08.005
pubmed: 31655772
R.N. Clayton, P.W. Jones, R.C. Reulen, P.M. Stewart, Z.K. Hassan-Smith, G. Ntali, N. Karavitaki, O.M. Dekkers, A.M. Pereira, M. Bolland, I. Holdaway, J. Lindholm, Mortality in patients with Cushing’s disease more than 10 years after remission: A multicentre, multinational, retrospective cohort study. Lancet Diabetes Endocrinol. 4, 569–576 (2016). https://doi.org/10.1016/S2213-8587(16)30005-5
doi: 10.1016/S2213-8587(16)30005-5
pubmed: 27265184
G. Ntali, A. Asimakopoulou, T. Siamatras, J. Komninos, D. Vassiliadi, M. Tzanela, S. Tsagarakis, A.B. Grossman, J.A.H. Wass, N. Karavitaki, Mortality in Cushing’s syndrome: Systematic analysis of a large series with prolonged follow-up. Eur. J. Endocrinol. 169, 715–723 (2013). https://doi.org/10.1530/EJE-13-0569
doi: 10.1530/EJE-13-0569
pubmed: 23996696
O. Ragnarsson, D.S. Olsson, E. Papakokkinou, D. Chantzichristos, P. Dahlqvist, E. Segerstedt, T. Olsson, M. Petersson, K. Berinder, S. Bensing, C. Hoybye, B. Eden-Engstrom, P. Burman, L. Bonelli, C. Follin, D. Petranek, E.M. Erfurth, J. Wahlberg, B. Ekman, A.K. Akerman, E. Schwarcz, I.L. Bryngelsson, G. Johannsson, Overall and disease-specific mortality in patients with cushing disease: A Swedish nationwide study. J. Clin. Endocrinol. Metab. 104, 2375–2384 (2019). https://doi.org/10.1210/jc.2018-02524
doi: 10.1210/jc.2018-02524
pubmed: 30715394
R.N. Clayton, D. Raskauskiene, R.C. Reulen, P.W. Jones, Mortality and morbidity in Cushing’s disease over 50 Years in Stoke-on-Trent, UK: Audit and meta-analysis of literature. J. Clin. Endocrinol. Metab. 96, 632–642 (2011). https://doi.org/10.1210/jc.2010-1942
doi: 10.1210/jc.2010-1942
pubmed: 21193542
D. Bengtsson, O. Ragnarsson, K. Berinder, P. Dahlqvist, B.E. Engström, B. Ekman, C. Höybye, J. Järås, S. Valdemarsson, P. Burman, J. Wahlberg, Increased Mortality Persists after Treatment of Cushing’s Disease: A Matched Nationwide Cohort Study. J. Endocr. Soc. 6, 1–10 (2022). https://doi.org/10.1210/jendso/bvac045
doi: 10.1210/jendso/bvac045
L. Fardet, I. Petersen, I. Nazareth, Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing’s syndrome: Cohort study. BMJ (Online). 345, (2012). https://doi.org/10.1136/bmj.e4928
R.N. Clayton, Cardiovascular complications of Cushing’s syndrome: Impact on morbidity and mortality. J Neuroendocrinol. 34, (2022). https://doi.org/10.1111/jne.13175
P.M. Toja, G. Branzi, F. Ciambellotti, P. Radaelli, M. De Martin, L.M. Lonati, M. Scacchi, G. Parati, F. Cavagnini, F.P. Giraldi, Clinical relevance of cardiac structure and function abnormalities in patients with Cushing’s syndrome before and after cure. Clin. Endocrinol. 76, 332–338 (2012). https://doi.org/10.1111/j.1365-2265.2011.04206.x
doi: 10.1111/j.1365-2265.2011.04206.x
A.M. Pereira, V. Delgado, J.A. Romijn, J.W.A. Smit, J.J. Bax, R.A. Feelders, Cardiac dysfunction is reversed upon successful treatment of Cushing’s syndrome. Eur. J. Endocrinol. 162, 331–340 (2010). https://doi.org/10.1530/EJE-09-0621
doi: 10.1530/EJE-09-0621
pubmed: 19933822
M.L. Muiesan, M. Lupia, M. Salvetti, C. Grigoletto, N. Sonino, M. Boscaro, E. Agabiti Rosei, F. Mantero, F. Fallo, Left ventricular structural and functional characteristics in Cushing’s syndrome. J. Am. Coll. Cardiol. 41, 2275–2279 (2003). https://doi.org/10.1016/S0735-1097(03)00493-5
doi: 10.1016/S0735-1097(03)00493-5
pubmed: 12821259
E. Avenatti, A. Rebellato, A. Iannaccone, M. Battocchio, F. Dassie, F. Veglio, A. Milan, F. Fallo, Left ventricular geometry and 24-h blood pressure profile in Cushing’s syndrome. Endocrine 55, 547–554 (2017). https://doi.org/10.1007/s12020-016-0986-6
doi: 10.1007/s12020-016-0986-6
pubmed: 27179657
K.H. Yiu, N.A. Marsan, V. Delgado, N.R. Biermasz, E.R. Holman, J.W.A. Smit, R.A. Feelders, J.J. Bax, A.M. Pereira, Increased myocardial fibrosis and left ventricular dysfunction in Cushing’s syndrome. Eur. J. Endocrinol. 166, 27–34 (2012). https://doi.org/10.1530/EJE-11-0601
doi: 10.1530/EJE-11-0601
pubmed: 22004909
C. Roux, N. Kachenoura, Z. Raissuni, E. Mousseaux, J. Young, M.J. Graves, C. Jublanc, P. Cluzel, P. Chanson, P. Kamenický, A. Redheuil, Effects of cortisol on the heart: characterization of myocardial involvement in Cushing’s disease by longitudinal cardiac MRI T1 mapping. J. Magn. Reson. Imaging 45, 147–156 (2017). https://doi.org/10.1002/jmri.25374
doi: 10.1002/jmri.25374
pubmed: 27393826
P. Kamenický, A. Redheuil, C. Roux, S. Salenave, N. Kachenoura, Z. Raissouni, L. Macron, L. Guignat, C. Jublanc, A. Azarine, S. Brailly, J. Young, E. Mousseaux, P. Chanson, Cardiac structure and function in cushing’s syndrome: A cardiac magnetic resonance imaging study. J. Clin. Endocrinol. Metab. 99, E2144–E2153 (2014). https://doi.org/10.1210/jc.2014-1783
doi: 10.1210/jc.2014-1783
pubmed: 25093618
pmcid: 4223435
K.E. Sheppard, D.J. Autelitano, 1-Hydroxysteroid Dehydrogenase 1 Transforms 11-Dehydrocorticosterone into Transcriptionally Active Glucocorticoid in Neonatal Rat Heart. Endocrinology 143, 198–204 (2002)
doi: 10.1210/endo.143.1.8583
pubmed: 11751610
G.A. Gray, C.I. White, R.F.P. Castellan, S.J. McSweeney, K.E. Chapman, Getting to the heart of intracellular glucocorticoid regeneration: 11β-HSD1 in the myocardium. J. Mol. Endocrinol. 58, R1–R13 (2017). https://doi.org/10.1530/JME-16-0128
doi: 10.1530/JME-16-0128
pubmed: 27553202
K. Nagata, K. Obata, J. Xu, S. Ichihara, A. Noda, H. Kimata, T. Kato, H. Izawa, T. Murohara, M. Yokota, Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats. Hypertension 47, 656–664 (2006). https://doi.org/10.1161/01.HYP.0000203772.78696.67
doi: 10.1161/01.HYP.0000203772.78696.67
pubmed: 16505208
A. Frustaci, C. Letizia, R. Verardo, C. Grande, L. Petramala, M.A. Russo, C. Chimenti, Cushing syndrome cardiomyopathy.clinicopathologic impact of cortisol normalization. Circ. Cardiovasc. Imaging. 9, (2016)
A. Frustaci, C. Letizia, R. Verardo, C. Grande, C. Calvieri, M.A. Russo, C. Chimenti, Atrogin-1 pathway activation in cushing syndrome cardiomyopathy. J. Am. Coll. Cardiol. 67, 116–117 (2016). https://doi.org/10.1016/j.jacc.2015.10.040
doi: 10.1016/j.jacc.2015.10.040
pubmed: 26764074
F. Maurice, B. Gaborit, C. Vincentelli, I. Abdesselam, M. Bernard, T. Graillon, F. Kober, T. Brue, F. Castinetti, A. Dutour, Cushing syndrome is associated with subclinical LV dysfunction and increased epicardial adipose tissue. J. Am. Coll. Cardiol. 72, 2276–2277 (2018). https://doi.org/10.1016/j.jacc.2018.07.096
doi: 10.1016/j.jacc.2018.07.096
pubmed: 30360834
P. Wolf, B. Marty, K. Bouazizi, N. Kachenoura, C. Piedvache, A. Blanchard, S. Salenave, M. Prigent, C. Jublanc, C. Ajzenberg, C. Droumaguet, J. Young, A.L. Lecoq, E. Kuhn, H. Agostini, S. Trabado, P.G. Carlier, B. Fève, A. Redheuil, P. Chanson, P. Kamenický, Epicardial and pericardial adiposity without myocardial steatosis in cushing syndrome. J. Clin. Endocrinol. Metab. 106, 3505–3514 (2021). https://doi.org/10.1210/clinem/dgab556
doi: 10.1210/clinem/dgab556
pubmed: 34333603
F. Tona, M. Boscaro, M. Barbot, L. Maritan, G. Famoso, L.C. Dal, R. Montisci, F. Fallo, S. Iliceto, C. Scaroni, New insights to the potential mechanisms driving coronary flow reserve impairment in Cushing’s syndrome: A pilot noninvasive study by transthoracic Doppler echocardiography. Microvasc. Res. 128, (2020). https://doi.org/10.1016/j.mvr.2019.103940
R. Sagara, T. Inoue, N. Sonoda, C. Yano, M. Motoya, H. Umakoshi, R. Sakamoto, Y. Ogawa, Association between cortisol and left ventricular diastolic dysfunction in patients with diabetes mellitus. J. Diabetes Investig. 13, 344–350 (2022). https://doi.org/10.1111/jdi.13653
doi: 10.1111/jdi.13653
pubmed: 34465012
O.M. Dekkers, E. Horváth-Puh́o, J.O.L. Jørgensen, S.C. Cannegieter, V. Ehrenstein, J.P. Vandenbroucke, A.M. Pereira, H.T. Srøensen, Multisystem morbidity and mortality in Cushing’s syndrome: A cohort study. J. Clin. Endocrinol. Metab. 98, 2277–2284 (2013). https://doi.org/10.1210/jc.2012-3582
doi: 10.1210/jc.2012-3582
pubmed: 23533241
S. Miao, L. Lu, L. Li, Y. Wang, Z. Lu, H. Zhu, L. Wang, L. Duan, X. Xing, Y. Yao, M. Feng, R. Wang, Clinical characteristics for the improvement of cushing’s syndrome complicated with cardiomyopathy after treatment with a literature review. Front. Cardiovasc. Med. 8, (2021). https://doi.org/10.3389/fcvm.2021.777964
M. Sakota, S. Tatebe, K. Sugimura, T. Aoki, S. Yamamoto, H. Sato, N. Kikuchi, R. Konno, Y. Terui, K. Satoh, Y. Tezuka, R. Morimoto, M. Saito, S. Kuniyoshi, H. Shimokawa, Successful management of acute congestive heart failure by emergent caesarean section followed by adrenalectomy in a pregnant woman with cushing’s syndrome-induced cardiomyopathy. Intern. Med. 58, 2819–2824 (2019). https://doi.org/10.2169/internalmedicine.2427-18
doi: 10.2169/internalmedicine.2427-18
pubmed: 31243234
pmcid: 6815909
M. Peppa, I. Ikonomidis, D. Hadjidakis, V. Pikounis, I. Paraskevaidis, T. Economopoulos, S.A. Raptis, D.T. Kremastinos, Dilated cardiomyopathy as the predominant feature of Cushing’s syndrome. Am. J. Med. Sci. 338, 252–253 (2009). https://doi.org/10.1097/MAJ.0b013e3181a927e0
doi: 10.1097/MAJ.0b013e3181a927e0
pubmed: 19687733
T. Sheikh, H. Shuja, S.R. Zaidi, A. Haque, Glucocorticoid-induced cardiomyopathy: Unexpected conclusion. BMJ Case Rep. 13, (2020). https://doi.org/10.1136/bcr-2020-237173
L. Marchand, B. Segrestin, M. Lapoirie, V. Favrel, J. Dementhon, E. Jouanneau, G. Raverot, Dilated Cardiomyopathy Revealing Cushing Disease. A Case Report and Literature Review. Med. (U. S.) 94, e2011 (2015). https://doi.org/10.1097/MD.0000000000002011
doi: 10.1097/MD.0000000000002011
T.M. Hey, J.S. Dahl, T.H. Brix, E.V. Søndergaard, D. Thomas, M. Hey, Biventricular hypertrophy and heart failure as initial presentation of Cushing’s disease. BMJ Case Rep. (2013). https://doi.org/10.1136/bcr-2013
L. Wei, T.M. Macdonald, B.R. Walker, Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease background: glucocorticoids have adverse systemic effects, in. Ann. Intern. Med. 141, 764–770 (2004)
doi: 10.7326/0003-4819-141-10-200411160-00007
pubmed: 15545676
M.J. Bolland, I.M. Holdaway, J.E. Berkeley, S. Lim, W.J. Dransfield, J.V. Conaglen, M.S. Croxson, G.D. Gamble, P.J. Hunt, R.J. Toomath, Mortality and morbidity in Cushing’s syndrome in New Zealand. Clin. Endocrinol. 75, 436–442 (2011). https://doi.org/10.1111/j.1365-2265.2011.04124.x
doi: 10.1111/j.1365-2265.2011.04124.x
P.C. Souverein, A. Berard, T.P. Van Staa, C. Cooper, A.C.G. Egberts, H.G.M. Leufkens, B.R. Walker, Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart 90, 859–865 (2004). https://doi.org/10.1136/hrt.2003.020180
doi: 10.1136/hrt.2003.020180
pubmed: 15253953
pmcid: 1768386
N.M. Neary, O.J. Booker, B.S. Abel, J.R. Matta, N. Muldoon, N. Sinaii, R.I. Pettigrew, L.K. Nieman, A.M. Gharib, Hypercortisolism is associated with increased coronary arterial atherosclerosis: Analysis of noninvasive coronary angiography using multidetector computerized tomography. J. Clin. Endocrinol. Metab. 98, 2045–2052 (2013). https://doi.org/10.1210/jc.2012-3754
doi: 10.1210/jc.2012-3754
pubmed: 23559084
pmcid: 3644598
M.J. Barahona, E. Resmini, D. Viladés, G. Pons-Lladó, R. Leta, T. Puig, S.M. Webb, Coronary artery disease detected by multislice computed tomography in patients after long-term cure of cushing’s syndrome. J. Clin. Endocrinol. Metab. 98, 1093–1099 (2013). https://doi.org/10.1210/jc.2012-3547
doi: 10.1210/jc.2012-3547
pubmed: 23393183
M. De Leo, R. Pivonello, R.S. Auriemma, A. Cozzolino, P. Vitale, C. Simeoli, M.C. De Martino, G. Lombardi, A. Colao, Cardiovascular disease in Cushing’s syndrome: Heart versus vasculature. Neuroendocrinology 92, 50–54 (2010). https://doi.org/10.1159/000318566
doi: 10.1159/000318566
pubmed: 20829618
C. Yano, M. Yokomoto-Umakoshi, M. Fujita, H. Umakoshi, S. Yano, N. Iwahashi, S. Katsuhara, H. Kaneko, M. Ogata, T. Fukumoto, E. Terada, Y. Matsuda, R. Sakamoto, Y. Ogawa, Coexistence of bone and vascular disturbances in patients with endogenous glucocorticoid excess. Bone Rep. 17, (2022). https://doi.org/10.1016/j.bonr.2022.101610
M. Battocchio, A. Rebellato, A. Grillo, F. Dassie, P. Maffei, S. Bernardi, B. Fabris, R. Carretta, F. Fallo, Ambulatory arterial stiffness indexes in cushing’s syndrome. Horm. Metab. Res. 49, 214–220 (2017). https://doi.org/10.1055/s-0043-100385
doi: 10.1055/s-0043-100385
pubmed: 28226362
I. Akaza, T. Yoshimoto, K. Tsuchiya, Y. Hirata, Endothelial dysfunction associated with hypercortisolism is reversible in cushing’s syndrome. Endocr. J. 57, 245–252 (2010)
doi: 10.1507/endocrj.K09E-260
pubmed: 20023367
G. Kirilov, A. Tomova, L. Dakovska, P. Kumanov, A. Shinkov, A.S. Alexandrov, Elevated plasma endothelin as an additional cardiovascular risk factor in patients with Cushing’s syndrome. Eur. J. Endocrinol. 149, 549–553 (2003)
doi: 10.1530/eje.0.1490549
pubmed: 14640996
A. Faggiano, D. Melis, R. Alfieri, M.C. De Martino, M. Filippella, F. Milone, G. Lombardi, A. Colao, R. Pivonello, Sulfur amino acids in Cushing’s disease: Insight in homocysteine and taurine levels in patients with active and cured disease. J. Clin. Endocrinol. Metabol. 90, 6616–6622 (2005). https://doi.org/10.1210/jc.2005-0656
doi: 10.1210/jc.2005-0656
G. Markousis‐Mavrogenis, F. Bacopoulou, C. Mavragani, P. Voulgari, G. Kolovou, G.D. Kitas, G.P. Chrousos, S.I. Mavrogeni, Coronary microvascular disease: The “Meeting Point” of Cardiology, Rheumatology and Endocrinology. Eur J Clin Invest. 52, (2022). https://doi.org/10.1111/eci.13737
R.B. Devereux, B. Dahlöf, E. Gerdts, K. Boman, M.S. Nieminen, V. Papademetriou, J. Rokkedal, K.E. Harris, J.M. Edelman, K. Wachtell, Regression of hypertensive left ventricular hypertrophy by Losartan compared with atenolol: The Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation 110, 1456–1462 (2004). https://doi.org/10.1161/01.CIR.0000141573.44737.5A
doi: 10.1161/01.CIR.0000141573.44737.5A
pubmed: 15326072
F. Grothues, G.C. Smith, J.C. Moon, M. BCh, N.G. Bellenger, P. Collins, H.U. Klein, D.J. Pennell, Comparison of Interstudy Reproducibility of Cardiovascular Magnetic Resonance With Two-Dimensional Echocardiography in Normal Subjects and in Patients With Heart Failure or Left Ventricular Hypertrophy. Am. J. Cardiol. 90, 29–34 (2002)
doi: 10.1016/S0002-9149(02)02381-0
pubmed: 12088775
J.H. Park, K. Negishi, D.H. Kwon, Z.B. Popovic, R.A. Grimm, T.H. Marwick, Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: Comparison with cardiac magnetic resonance and outcome. J. Cardiovasc Ultrasound 22, 113–120 (2014). https://doi.org/10.4250/jcu.2014.22.3.113
doi: 10.4250/jcu.2014.22.3.113
pubmed: 25309687
pmcid: 4192408
M. Aurich, F. André, M. Keller, S. Greiner, A. Hess, S.J. Buss, H.A. Katus, D. Mereles, Assessment of left ventricular volumes with echocardiography and cardiac magnetic resonance imaging: Real-life evaluation of standard versus new semiautomatic methods. J. Am. Soc. Echocardiogr. 27, 1017–1024 (2014). https://doi.org/10.1016/j.echo.2014.07.006
doi: 10.1016/j.echo.2014.07.006
pubmed: 25129394
L. Perdrix, N. Mansencal, B. Cocheteux, G. Chatellier, A. Bissery, B. Diebold, E. Mousseaux, E. Abergel, How to calculate left ventricular mass in routine practice? An echocardiographic versus cardiac magnetic resonance study. Arch. Cardiovasc Dis. 104, 343–351 (2011). https://doi.org/10.1016/j.acvd.2011.04.003
doi: 10.1016/j.acvd.2011.04.003
pubmed: 21693371
H. Oe, T. Hozumi, K. Arai, Y. Matsumura, K. Negishi, K. Sugioka, K. Ujino, Y. Takemoto, Y. Inoue, J. Yoshikawa, Comparison of accurate measurement of left ventricular mass in patients with hypertrophied hearts by real-time three-dimensional echocardiography versus magnetic resonance imaging. Am. J. Cardiol. 95, 1263–1267 (2005). https://doi.org/10.1016/j.amjcard.2005.01.065
doi: 10.1016/j.amjcard.2005.01.065
pubmed: 15878010
K. Kusunose, D.H. Kwon, H. Motoki, S.D. Flamm, T.H. Marwick, Comparison of three-dimensional echocardiographic findings to those of magnetic resonance imaging for determination of left ventricular mass in patients with ischemic and non-ischemic cardiomyopathy. Am. J. Cardiol. 112, 604–611 (2013). https://doi.org/10.1016/j.amjcard.2013.04.028
doi: 10.1016/j.amjcard.2013.04.028
pubmed: 23768466
K. Alfakih, K. Walters, T. Jones, J. Ridgway, A.S. Hall, M. Sivananthan, New gender-specific partition values for ECG criteria of left ventricular hypertrophy: Recalibration against cardiac MRI. Hypertension 44, 175–179 (2004). https://doi.org/10.1161/01.HYP.0000135249.66192.30
doi: 10.1161/01.HYP.0000135249.66192.30
pubmed: 15226274
K. Moschetti, R.Y. Kwong, S.E. Petersen, M. Lombardi, J. Garot, D. Atar, F.E. Rademakers, L.M. Sierra-Galan, S. Mavrogeni, K. Li, J.L. Fernandes, S. Schneider, C. Pinget, Y. Ge, P. Antiochos, C. Deluigi, O. Bruder, H. Mahrholdt, J. Schwitter, Cost-Minimization Analysis for Cardiac Revascularization in 12 Health Care Systems Based on the EuroCMR/SPINS Registries. JACC Cardiovasc Imaging 15, 607–625 (2022). https://doi.org/10.1016/j.jcmg.2021.11.008
doi: 10.1016/j.jcmg.2021.11.008
pubmed: 35033498
S.I. Mavrogeni, A. Kallifatidis, T. Kourtidou, N. Lama, A. Christidi, E. Detorakis, G. Chatzantonis, T. Vrachliotis, T. Karamitsos, K. Kouskouras, N. Kelekis. Cardiovascular Magnetic Resonance for evaluation of patients with cardiovascular disease. An overview of current indications, limitations and procedures. Hell. J. Cardiol. (2023). https://doi.org/10.1016/j.hjc.2023.01.003
S. Mavrogeni, A. Pepe, R. Nijveldt, N. Ntusi, L.M. Sierra-Galan, K. Bratis, J. Wei, M. Mukherjee, G. Markousis-Mavrogenis, L. Gargani, L.E. Sade, N. Ajmone-Marsan, P. Seferovic, E. Donal, M. Nurmohamed, M.M. Cerinic, P. Sfikakis, G. Kitas, J. Schwitter, J.A.C. Lima, D. Dawson, M. Dweck, K.H. Haugaa, N. Keenan, J. Moon, I. Stankovic, E. Donal, B. Cosyns, Cardiovascular magnetic resonance in autoimmune rheumatic diseases: a clinical consensus document by the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc Imaging 23, e308–e322 (2022). https://doi.org/10.1093/ehjci/jeac134
doi: 10.1093/ehjci/jeac134
pubmed: 35808990
K. Ehrlich, C. Morbach, T. Reiter, P.U. Heuschmann, A. Hannemann, M. Fassnacht, S. Störk, S. Hahner, T. Deutschbein, Rationale and design of the cardiovascular status in patients with endogenous cortisol excess study (CV-CORT-EX): a prospective non-interventional follow-up study. BMC Endocr Disord. 21, (2021). https://doi.org/10.1186/s12902-020-00665-7