Macrophage polarization in inflammatory bowel disease.

Immunotherapy Inflammatory bowel disease Macrophage Polarization Signaling pathway

Journal

Cell communication and signaling : CCS
ISSN: 1478-811X
Titre abrégé: Cell Commun Signal
Pays: England
ID NLM: 101170464

Informations de publication

Date de publication:
21 Dec 2023
Historique:
received: 16 06 2023
accepted: 04 11 2023
medline: 22 12 2023
pubmed: 22 12 2023
entrez: 22 12 2023
Statut: epublish

Résumé

The growing prevalence of inflammatory bowel disease (IBD) has encouraged research efforts, which have contributed to gradual improvements in our understanding of IBD diagnosis and therapeutic approaches. The pathogenesis of IBD has not been fully elucidated; however, the combined actions of environmental, genetic, immune factors, and microbial organisms are believed to cause IBD. In the innate immune system, macrophages play important roles in maintaining intestinal health and in the development of IBD. Macrophages can be polarized from M0 into several phenotypes, among which M1 and M2 play critical roles in IBD development and the repair of intestinal homeostasis and damage. Certain macrophage-related IBD studies already exist; however, the functions of each phenotype have not been fully elucidated. As technology develops, understanding the link between macrophages and IBD has increased, including the growing knowledge of the developmental origins of intestinal macrophages and their performance of comprehensive functions. This review describes macrophage polarization in IBD from the perspectives of macrophage development and polarization, macrophage changes in homeostasis and IBD, metabolic changes, and the mechanisms of macrophage polarization in IBD. The discussion of these topics provides new insights into immunotherapy strategies for IBD. Video Abstract.

Identifiants

pubmed: 38129886
doi: 10.1186/s12964-023-01386-9
pii: 10.1186/s12964-023-01386-9
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

367

Subventions

Organisme : Basic scientific research project of Liaoning Provincial Department of Education
ID : LJKMZ20221184
Organisme : the Science and Technology Plan of Liaoning Province
ID : 2021JH2/10300094
Organisme : Natural Science Foundation of Liaoning Province
ID : 2019-MS-372

Informations de copyright

© 2023. The Author(s).

Références

Kofla-Dlubacz A, Pytrus T, Akutko K, Sputa-Grzegrzolka P, Piotrowska A, Dziegiel P. Etiology of IBD-Is it still a mystery? Int J Mol Sci. 2022;23(20):12445.
Collaborators G, B D I B. D. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30.
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel Disease. Nat Rev Gastroenterol Hepatol. 2023;20(8):538–53.
pubmed: 37069320 doi: 10.1038/s41575-023-00769-0
Bloemendaal FM, Levin AD, Wildenberg ME, Koelink PJ, Mcrae BL, Salfeld J, et al. Anti-tumor necrosis factor with a Glyco-Engineered Fc-Region has increased efficacy in mice with Colitis. Gastroenterology. 2017;153(5):1351–62. e4.
Vos AC, Wildenberg ME, Duijvestein M, Verhaar AP, Van Den Brink GR, Hommes DW. Anti-tumor necrosis factor-alpha antibodies induce regulatory macrophages in an fc region-dependent manner. Gastroenterology. 2011;140(1):221–30.
pubmed: 20955706 doi: 10.1053/j.gastro.2010.10.008
Vos AC, Wildenberg ME, Arijs I, Duijvestein M, Verhaar AP, De Hertogh G, et al. Regulatory macrophages induced by infliximab are involved in healing in vivo and in vitro. Inflamm Bowel Dis. 2012;18(3):401–8.
pubmed: 21936028 doi: 10.1002/ibd.21818
Nighot M, Ganapathy AS, Saha K, Suchanec E, Castillo EF, Gregory A, et al. Matrix metalloproteinase MMP-12 promotes macrophage transmigration across intestinal epithelial tight junctions and increases severity of experimental Colitis. J Crohns Colitis. 2021;15(10):1751–65.
pubmed: 33836047 pmcid: 8495490 doi: 10.1093/ecco-jcc/jjab064
Gao C, Zhou Y, Chen Z, Li H, Xiao Y, Hao W, et al. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative Colitis. Theranostics. 2022;12(12):5596–614.
pubmed: 35910802 pmcid: 9330521 doi: 10.7150/thno.73650
Liu X, Ren X, Zhou L, Liu K, Deng L, Qing Q, et al. Tollip orchestrates macrophage polarization to alleviate intestinal mucosal inflammation. J Crohns Colitis. 2022;16(7):1151–67.
pubmed: 35134154 doi: 10.1093/ecco-jcc/jjac019
Loke P, Lin JD. Redefining inflammatory macrophage phenotypes across stages and tissues by single-cell transcriptomics. Sci Immunol. 2022;7(70):eabo4652.
pubmed: 35427177 doi: 10.1126/sciimmunol.abo4652
Shaw TN, Houston SA, Wemyss K, Bridgeman HM, Barbera TA, Zangerle-Murray T, et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J Exp Med. 2018;215(6):1507–18.
pubmed: 29789388 pmcid: 5987925 doi: 10.1084/jem.20180019
Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631–44.
pubmed: 18295580 pmcid: 2628169 doi: 10.1016/j.cell.2008.01.025
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.
pubmed: 19029990 pmcid: 2724991 doi: 10.1038/nri2448
Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and Disease Control. Int J Mol Sci. 2021;23(1):144.
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.
pubmed: 31530089 doi: 10.1146/annurev-pathmechdis-012418-012718
Akhmanova M, Emtenani S, Krueger D, Gyoergy A, Guarda M, Vlasov M, et al. Cell division in tissues enables macrophage infiltration. Science. 2022;376(6591):394–6.
De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell. 2018;175(2):400-15. e13.
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and Disease. Nature. 2013;496(7446):445–55.
pubmed: 23619691 pmcid: 3725458 doi: 10.1038/nature12034
Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F, Henri S, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol. 2014;15(10):929–37.
Zhu X, Zhu Y, Li C, Yu J, Ren D, Qiu S, et al. 1,25–Dihydroxyvitamin D regulates macrophage polarization and ameliorates experimental inflammatory bowel Disease by suppressing miR-125b. Int Immunopharmacol. 2019;67:106–18.
pubmed: 30540970 doi: 10.1016/j.intimp.2018.12.015
Hunter MM, Wang A, Parhar KS, Johnston MJ, Van Rooijen N, Beck PL, et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology. 2010;138(4):1395–405.
pubmed: 20044996 doi: 10.1053/j.gastro.2009.12.041
Dharmasiri S, Garrido-Martin EM, Harris RJ, Bateman AC, Collins JE, Cummings JRF, et al. Human intestinal macrophages are involved in the Pathology of both Ulcerative Colitis and Crohn Disease. Inflamm Bowel Dis. 2021;27(10):1641–52.
pubmed: 33570153 pmcid: 8522792 doi: 10.1093/ibd/izab029
Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88.
pubmed: 24530056 pmcid: 3991396 doi: 10.1016/j.immuni.2014.01.006
Garrido-Trigo A, Corraliza AM, Veny M, Dotti I, Melon-Ardanaz E, Rill A, et al. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel Disease. Nat Commun. 2023;14(1):4506.
pubmed: 37495570 pmcid: 10372067 doi: 10.1038/s41467-023-40156-6
Zhao X, Di Q, Liu H, Quan J, Ling J, Zhao Z, et al. MEF2C promotes M1 macrophage polarization and Th1 responses. Cell Mol Immunol. 2022;19(4):540–53.
pubmed: 35194174 pmcid: 8975968 doi: 10.1038/s41423-022-00841-w
Cao X, Duan L, Hou H, Liu Y, Chen S, Zhang S, et al. IGF-1 C hydrogel improves the therapeutic effects of MSCs on Colitis in mice through PGE(2)-mediated M2 macrophage polarization. Theranostics. 2020;10(17):7697–709.
pubmed: 32685014 pmcid: 7359093 doi: 10.7150/thno.45434
Zhuang H, Lv Q, Zhong C, Cui Y, He L, Zhang C, et al. Tiliroside ameliorates Ulcerative Colitis by restoring the M1/M2 macrophage balance via the HIF-1alpha/glycolysis pathway. Front Immunol. 2021;12:649463.
pubmed: 33868286 pmcid: 8044352 doi: 10.3389/fimmu.2021.649463
Lissner D, Schumann M, Batra A, Kredel LI, Kuhl AA, Erben U, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis. 2015;21(6):1297–305.
pubmed: 25901973
Tang B, Zhu J, Zhang B, Wu F, Wang Y, Weng Q, et al. Therapeutic potential of Triptolide as an anti-inflammatory Agent in Dextran Sulfate Sodium-Induced Murine Experimental Colitis. Front Immunol. 2020;11:592084.
pubmed: 33240279 pmcid: 7680904 doi: 10.3389/fimmu.2020.592084
Liu R, Li X, Ma H, Yang Q, Shang Q, Song L, et al. Spermidine endows macrophages anti-inflammatory properties by inducing mitochondrial superoxide-dependent AMPK activation, Hif-1alpha upregulation and autophagy. Free Radic Biol Med. 2020;161:339–50.
pubmed: 33122005 doi: 10.1016/j.freeradbiomed.2020.10.029
Zhang Y, Li X, Luo Z, Ma L, Zhu S, Wang Z, et al. ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation. Proc Natl Acad Sci U S A. 2020;117(6):3083–92.
pubmed: 31980528 pmcid: 7022174 doi: 10.1073/pnas.1912774117
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.
pubmed: 20510870 doi: 10.1016/j.immuni.2010.05.007
Sun S, Xu X, Liang L, Wang X, Bai X, Zhu L, et al. Lactic acid-producing Probiotic Saccharomyces cerevisiae attenuates Ulcerative Colitis via suppressing macrophage pyroptosis and modulating gut microbiota. Front Immunol. 2021;12:777665.
pubmed: 34899735 pmcid: 8652295 doi: 10.3389/fimmu.2021.777665
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and Disease. J Cell Physiol. 2018;233(9):6425–40.
pubmed: 29319160 doi: 10.1002/jcp.26429
Yang YF, Zhou YD, Hu JC, Luo FL, Xie Y, Shen YY, et al. Ficolin-A/2, acting as a new regulator of macrophage polarization, mediates the inflammatory response in experimental mouse Colitis. Immunology. 2017;151(4):433–50.
pubmed: 28380665 pmcid: 5506452 doi: 10.1111/imm.12741
He R, Li Y, Han C, Lin R, Qian W, Hou X. L-Fucose ameliorates DSS-induced acute Colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation. Int Immunopharmacol. 2019;73:379–88.
pubmed: 31132733 doi: 10.1016/j.intimp.2019.05.013
Tian L, Zhao JL, Kang JQ, Guo SB, Zhang N, Shang L, et al. Astragaloside IV alleviates the experimental DSS-Induced Colitis by remodeling macrophage polarization through STAT signaling. Front Immunol. 2021;12:740565.
pubmed: 34589089 pmcid: 8473681 doi: 10.3389/fimmu.2021.740565
Zhou X, Li W, Wang S, Zhang P, Wang Q, Xiao J, et al. YAP aggravates inflammatory Bowel Disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 2019;27(4):1176–89. e5.
Yan S, Wei H, Jia R, Zhen M, Bao S, Wang W, et al. Wu-Mei-Wan ameliorates murine ulcerative Colitis by regulating macrophage polarization. Front Pharmacol. 2022;13:859167.
pubmed: 35387334 pmcid: 8978603 doi: 10.3389/fphar.2022.859167
Spalinger MR, Sayoc-Becerra A, Santos AN, Shawki A, Canale V, Krishnan M, et al. PTPN2 regulates interactions between macrophages and intestinal epithelial cells to promote intestinal barrier function. Gastroenterology. 2020;159(5):1763–77e14.
pubmed: 32652144 doi: 10.1053/j.gastro.2020.07.004
Arranz A, Doxaki C, Vergadi E, De La Martinez Y, Vaporidi K, Lagoudaki ED, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A. 2012;109(24):9517–22.
pubmed: 22647600 pmcid: 3386059 doi: 10.1073/pnas.1119038109
Huang B, Chen Z, Geng L, Wang J, Liang H, Cao Y, et al. Mucosal profiling of Pediatric-Onset Colitis and IBD reveals common pathogenics and therapeutic pathways. Cell. 2019;179(5):1160–76e24.
pubmed: 31730855 doi: 10.1016/j.cell.2019.10.027
Li Y, Zhu L, Chen P, Wang Y, Yang G, Zhou G, et al. MALAT1 maintains the intestinal mucosal homeostasis in Crohn’s Disease via the miR-146b-5p-CLDN11/NUMB pathway. J Crohns Colitis. 2021;15(9):1542–57.
pubmed: 33677577 doi: 10.1093/ecco-jcc/jjab040
Chikina AS, Nadalin F, Maurin M, San-Roman M, Thomas-Bonafos T, Li XV et al. Macrophages maintain Epithelium Integrity by limiting Fungal product absorption. Cell. 2020;183(2): 411–28. e16.
Kudo T, Arai K, Uchida K, Tajiri H, Hokari R, Suzuki Y, et al. Very early-onset inflammatory bowel Disease in Japan: a nationwide survey. J Gastroenterol Hepatol. 2021;36(1):151–5.
pubmed: 32530546 doi: 10.1111/jgh.15146
Castro-Dopico T, Fleming A, Dennison TW, Ferdinand JR, Harcourt K, Stewart BJ, et al. GM-CSF Calibrates Macrophage Defense and Wound Healing Programs during intestinal Infection and inflammation. Cell Rep. 2020;32(1):107857.
pubmed: 32640223 pmcid: 7351110 doi: 10.1016/j.celrep.2020.107857
Westendorp BF, Buller N, Karpus ON, Van Dop WA, Koster J, Versteeg R, et al. Indian hedgehog suppresses a stromal cell-driven intestinal Immune response. Cell Mol Gastroenterol Hepatol. 2018;5(1):67–82. e1.
Wang L, Dong X, Feng S, Pan H, Jang X, Chen L, et al. VX765 alleviates dextran sulfate sodium-induced Colitis in mice by suppressing caspase-1-mediated pyroptosis. Int Immunopharmacol. 2022;102:108405.
pubmed: 34865993 doi: 10.1016/j.intimp.2021.108405
Na YR, Jung D, Stakenborg M, Jang H, Gu GJ, Jeong MR, et al. Prostaglandin E(2) receptor PTGER4-expressing macrophages promote intestinal epithelial barrier regeneration upon inflammation. Gut. 2021;70(12):2249–60.
pubmed: 33558271 doi: 10.1136/gutjnl-2020-322146
Nystrom EEL, Martinez-Abad B, Arike L, Birchenough GMH, Nonnecke EB, Castillo PA, et al. An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Science. 2021;372(6539):eabb1590.
Martinez-Guryn K, Leone V, Chang EB. Regional Diversity of the gastrointestinal microbiome. Cell Host Microbe. 2019;26(3):314–24.
pubmed: 31513770 pmcid: 6750279 doi: 10.1016/j.chom.2019.08.011
Koboziev I, Karlsson F, Grisham MB. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation. Ann N Y Acad Sci. 2010;1207(Suppl 1):E86–93.
pubmed: 20961311 pmcid: 3075575
Muller CA, Autenrieth IB, Peschel A. Innate defenses of the intestinal epithelial barrier. Cell Mol Life Sci. 2005;62(12):1297–307.
pubmed: 15971105 doi: 10.1007/s00018-005-5034-2
Lin W, Xu D, Austin CD, Caplazi P, Senger K, Sun Y, et al. Function of CSF1 and IL34 in macrophage homeostasis, inflammation, and Cancer. Front Immunol. 2019;10:2019.
pubmed: 31552020 pmcid: 6736990 doi: 10.3389/fimmu.2019.02019
Munoz-Garcia J, Cochonneau D, Teletchea S, Moranton E, Lanoe D, Brion R, et al. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics. 2021;11(4):1568–93.
Guilliams M, Thierry GR, Bonnardel J, Bajenoff M. Establishment and maintenance of the Macrophage Niche. Immunity. 2020;52(3):434–51.
pubmed: 32187515 doi: 10.1016/j.immuni.2020.02.015
Huang C, Wang J, Liu H, Huang R, Yan X, Song M, et al. Ketone body beta-hydroxybutyrate ameliorates Colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. BMC Med. 2022;20(1):148.
pubmed: 35422042 pmcid: 9011974 doi: 10.1186/s12916-022-02352-x
Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental risk factors for inflammatory Bowel Diseases: an Umbrella Review of Meta-analyses. Gastroenterology. 2019;157(3):647–59. e4.
De Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel Disease. Nat Genet. 2017;49(2):256–61.
pubmed: 28067908 pmcid: 5289481 doi: 10.1038/ng.3760
Zhang H, Cao N, Yang Z, Fang X, Yang X, Li H, et al. Bilobalide Alleviated Dextran Sulfate Sodium-Induced Experimental Colitis by inhibiting M1 macrophage polarization through the NF-kappaB signaling pathway. Front Pharmacol. 2020;11:718.
pubmed: 32670051 pmcid: 7326085 doi: 10.3389/fphar.2020.00718
Liu H, Liang Z, Wang F, Zhou C, Zheng X, Hu T et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight. 2019;4(24):e131273.
Song L, Chang R, Sun X, Lu L, Gao H, Lu H, et al. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/beta-catenin signaling in mice. Commun Biol. 2021;4(1):213.
pubmed: 33594251 pmcid: 7887198 doi: 10.1038/s42003-021-01730-0
Han C, Sheng Y, Wang J, Zhou X, Li W, Zhang C, et al. NOX4 promotes mucosal barrier injury in inflammatory bowel Disease by mediating macrophages M1 polarization through ROS. Int Immunopharmacol. 2022;104:108361.
Liang L, Liu L, Zhou W, Yang C, Mai G, Li H, et al. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin Sci (Lond). 2022;136(4):291–307.
pubmed: 35194640 doi: 10.1042/CS20210778
Wang W, Zhai D, Bai Y, Xue K, Deng L, Ma L, et al. Loss of QKI in macrophage aggravates inflammatory bowel Disease through amplified ROS signaling and microbiota disproportion. Cell Death Discov. 2021;7(1):58.
pubmed: 33758177 pmcid: 7988119 doi: 10.1038/s41420-021-00444-w
Fu J, Zang Y, Zhou Y, Chen C, Shao S, Shi G, et al. Exploring a novel triptolide derivative possess anti-colitis effect via regulating T cell differentiation. Int Immunopharmacol. 2021;94:107472.
pubmed: 33611058 doi: 10.1016/j.intimp.2021.107472
Mak’anyengo R, Duewell P, Reichl C, Horth C, Lehr HA, Fischer S, et al. Nlrp3-dependent IL-1beta inhibits CD103 + dendritic cell differentiation in the gut. JCI Insight. 2018;3(5):e96322.
Ruan S, Xu L, Sheng Y, Wang J, Zhou X, Zhang C, et al. Th1 promotes M1 polarization of intestinal macrophages to regulate colitis-related mucosal barrier damage. Aging. 2023;15(14):6721–35.
pubmed: 37494667 pmcid: 10415578 doi: 10.18632/aging.204629
Li H, Zhu R, Liu X, Zhao K, Hong D. Siglec-15 Regulates the Inflammatory Response and Polarization of Tumor-Associated Macrophages in Pancreatic Cancer by Inhibiting the cGAS-STING Signaling Pathway. Oxid Med Cell Longev. 2022;2022:3341038.
Thibaut R, Orliaguet L, Ejlalmanesh T, Venteclef N, Alzaid F. Perspective on direction of control: Cellular metabolism and macrophage polarization. Front Immunol. 2022;13:918747.
pubmed: 36159824 pmcid: 9493491 doi: 10.3389/fimmu.2022.918747
Wang S, Huang J, Liu F, Tan KS, Deng L, Lin Y, et al. Isosteviol Sodium exerts Anti-colitic effects on BALB/c mice with Dextran Sodium Sulfate-Induced Colitis through metabolic reprogramming and Immune Response Modulation. J Inflamm Res. 2021;14:7107–30.
pubmed: 34992409 pmcid: 8709797 doi: 10.2147/JIR.S344990
Perez S, Rius-Perez S. Macrophage polarization and reprogramming in Acute inflammation: a Redox Perspective. Antioxid (Basel), 2022;11(7):1394.
Lee W, Chung HK, Kim J, Ko I, Yang C-S, Kim HK, LMT503, A novel therapy for inflammatory bowel disease through macrophage polarizations by metabolic reprogramming of activated macrophage. Inflamm Bowel Dis. 2023;29(Supplement1):4–S5.
Liu PS, Chen YT, Li X, Hsueh PC, Tzeng SF, Chen H, et al. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat Immunol. 2023;24(3):452–62.
pubmed: 36823405 pmcid: 9977680 doi: 10.1038/s41590-023-01430-3
Jiang Q, Qiu Y, Kurland IJ, Drlica K, Subbian S, Tyagi S, et al. Glutamine is required for M1-like polarization of macrophages in response to Mycobacterium tuberculosis Infection. mBio. 2022;13(4):e0127422.
pubmed: 35762591 doi: 10.1128/mbio.01274-22
Shan X, Hu P, Ni L, Shen L, Zhang Y, Ji Z, et al. Serine metabolism orchestrates macrophage polarization by regulating the IGF1-p38 axis. Cell Mol Immunol. 2022;19(11):1263–78.
pubmed: 36180780 pmcid: 9622887 doi: 10.1038/s41423-022-00925-7
Bohaud C, Cruz J, Terraza C, Barthelaix A, Laplace-Builhe B, Jorgensen C, et al. Lactate metabolism coordinates macrophage response and regeneration in zebrafish. Theranostics. 2022;12(8):3995–4009.
pubmed: 35664055 pmcid: 9131269 doi: 10.7150/thno.65235
Kim H, Hong JY, Jeon WJ, Lee J, Lee YJ, Ha IH. Melittin regulates iron homeostasis and mediates macrophage polarization in rats with lumbar spinal stenosis. Biomed Pharmacother. 2022;156:113776.
pubmed: 36244265 doi: 10.1016/j.biopha.2022.113776
Date D, Das R, Narla G, Simon DI, Jain MK, Mahabeleshwar GH. Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization. J Biol Chem. 2014;289(15):10318–29.
pubmed: 24385430 pmcid: 4036156 doi: 10.1074/jbc.M113.526749
Goodman WA, Omenetti S, Date D, Di Martino L, De Salvo C, Kim GD, et al. KLF6 contributes to myeloid cell plasticity in the pathogenesis of intestinal inflammation. Mucosal Immunol. 2016;9(5):1250–62.
pubmed: 26838049 pmcid: 4972715 doi: 10.1038/mi.2016.1
Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD et al. O’connell R M,. MicroRNA-125b potentiates macrophage activation. J Immunol. 2011;187(10):5062-8.
Mello SS, Sinow C, Raj N, Mazur PK, Bieging-Rolett K, Broz DK, et al. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev. 2017;31(11):1095–108.
pubmed: 28698299 pmcid: 5538433 doi: 10.1101/gad.284661.116
Liu R, Tang A, Wang X, Chen X, Zhao L, Xiao Z, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med. 2018;42(5):2903–13.
pubmed: 30132508
Akincilar SC, Wu L, Ng QF, Chua JYH, Unal B, Noda T, et al. NAIL: an evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFkappaB in Colitis. Gut. 2021;70(10):1857–71.
pubmed: 33239342 doi: 10.1136/gutjnl-2020-322980
Jabandziev P, Bohosova J, Pinkasova T, Kunovsky L, Slaby O, Goel A. The emerging role of noncoding RNAs in Pediatric Inflammatory Bowel Disease. Inflamm Bowel Dis. 2020;26(7):985–93.
pubmed: 32009179 pmcid: 7301403 doi: 10.1093/ibd/izaa009
Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol. 2012;44(11):2060–4.
pubmed: 22903023 doi: 10.1016/j.biocel.2012.08.007
Cai X, Zhang ZY, Yuan JT, Ocansey DKW, Tu Q, Zhang X, et al. hucMSC-derived exosomes attenuate Colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis. Stem Cell Res Ther. 2021;12(1):416.
pubmed: 34294138 pmcid: 8296541 doi: 10.1186/s13287-021-02492-6
Liang ZX, Liu HS, Xiong L, Zeng ZW, Zheng XB, Kang L, et al. GAS6 from CD200 + adipose-derived stem cells mitigates colonic inflammation in a macrophage-dependent manner. J Crohns Colitis. 2023;17(2):289–301.
pubmed: 36006655 doi: 10.1093/ecco-jcc/jjac123
An JH, Li Q, Bhang DH, Song WJ, Youn HY. TNF-alpha and INF-gamma primed canine stem cell-derived extracellular vesicles alleviate experimental murine Colitis. Sci Rep. 2020;10(1):2115.
pubmed: 32034203 pmcid: 7005871 doi: 10.1038/s41598-020-58909-4
Yang R, Liao Y, Wang L, He P, Hu Y, Yuan D, et al. Exosomes Derived from M2b macrophages Attenuate DSS-Induced Colitis. Front Immunol. 2019;10:2346.
pubmed: 31749791 pmcid: 6843072 doi: 10.3389/fimmu.2019.02346
Shen Q, Huang Z, Ma L, Yao J, Luo T, Zhao Y, et al. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in Colitis. Gut Microbes. 2022;14(1):2128604.
pubmed: 36176029 pmcid: 9542864 doi: 10.1080/19490976.2022.2128604
Hu Z, Yang M, Ye Q, Qin K, Wu M, Gu R et al. Tou Nong San Attenuates Inflammation in TNBS-IBD Model by Inhibiting NF-kappaB Signaling Pathway. Evid Based Complement Alternat Med. 2018;2018:6929307.
Papoutsopoulou S, Campbell BJ. Epigenetic modifications of the Nuclear factor Kappa B Signalling Pathway and its impact on inflammatory bowel Disease. Curr Pharm Des. 2021;27(35):3702–13.
pubmed: 33602081 doi: 10.2174/1381612827666210218141847
Starr AE, Deeke SA, Ning Z, Chiang CK, Zhang X, Mottawea W, et al. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel Disease inception cohort identifies protein biomarkers that differentiate Crohn’s Disease from UC. Gut. 2017;66(9):1573–83.
pubmed: 27216938 doi: 10.1136/gutjnl-2015-310705
Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, Grander C, et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut. 2018;67(10):1813–23.
pubmed: 28877980 doi: 10.1136/gutjnl-2017-314241
Sayoc-Becerra A, Krishnan M, Fan S, Jimenez J, Hernandez R, Gibson K, et al. The JAK-Inhibitor Tofacitinib rescues human intestinal epithelial cells and colonoids from Cytokine-Induced Barrier Dysfunction. Inflamm Bowel Dis. 2020;26(3):407–22.
pubmed: 31751457 doi: 10.1093/ibd/izz266
Hedl M, Sun R, Huang C, Abraham C. STAT3 and STAT5 signaling thresholds determine distinct regulation for innate receptor-Induced Inflammatory cytokines, and STAT3/STAT5 Disease variants modulate these outcomes. J Immunol. 2019;203(12):3325–38.
pubmed: 31732533 doi: 10.4049/jimmunol.1900031
Biswas A, Shouval DS, Griffith A, Goettel JA, Field M, Kang YH, et al. WASP-mediated regulation of anti-inflammatory macrophages is IL-10 dependent and is critical for intestinal homeostasis. Nat Commun. 2018;9(1):1779.
pubmed: 29725003 pmcid: 5934380 doi: 10.1038/s41467-018-03670-6
Ma S, Zhang J, Liu H, Li S, Wang Q. The role of tissue-Resident macrophages in the Development and Treatment of Inflammatory Bowel Disease. Front Cell Dev Biol. 2022;10:896591.
pubmed: 35721513 pmcid: 9199005 doi: 10.3389/fcell.2022.896591
Koelink PJ, Bloemendaal FM, Li B, Westera L, Vogels EWM, Van Roest M, et al. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut. 2020;69(6):1053–63.
pubmed: 31506328 doi: 10.1136/gutjnl-2019-318264
Gao W, Wang C, Yu L, Sheng T, Wu Z, Wang X et al. Chlorogenic Acid Attenuates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice through MAPK/ERK/JNK Pathway. Biomed Res Int. 2019;2019:6769789.
Gao L, Yu Q, Zhang H, Wang Z, Zhang T, Xiang J et al. A resident stromal cell population actively restrains innate immune response in the propagation phase of colitis pathogenesis in mice. Sci Transl Med. 2021;13(603).
Huai M, Zeng J, Ge W. Artemisinin ameliorates intestinal inflammation by skewing macrophages to the M2 phenotype and inhibiting epithelial-mesenchymal transition. Int Immunopharmacol. 2021;91:107284.
pubmed: 33359851 doi: 10.1016/j.intimp.2020.107284
Zeng J, Yu H, Gan HT. Glial cell line-derived neurotrophic factor ameliorates dextran sulfate sodium-induced Colitis in mice via a macrophage-mediated pathway. Int Immunopharmacol. 2021;100:108143.
pubmed: 34543979 doi: 10.1016/j.intimp.2021.108143
Liang ZX, Liu HS, Xiong L, Zeng ZW, Zheng XB, Kang L et al. GAS6 from CD200 + adipose-derived stem cells mitigates colonic inflammation via a macrophage-dependent manner. J Crohns Colitis. 2023;17(2):289–301.
Deng S, Zhou X, Ge Z, Song Y, Wang H, Liu X, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after Myocardial Infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 2019;114:105564.
pubmed: 31276786 doi: 10.1016/j.biocel.2019.105564
Yang J, Yang L, Tian L, Ji X, Yang L, Li L. Sphingosine 1-Phosphate (S1P)/S1P Receptor2/3 Axis promotes inflammatory M1 polarization of bone marrow-derived Monocyte/Macrophage via G(alpha)i/o/PI3K/JNK pathway. Cell Physiol Biochem. 2018;49(5):1677–93.
pubmed: 30231248 doi: 10.1159/000493611
Wang X, Chen S, Xiang H, Wang X, Xiao J, Zhao S, et al. S1PR2/RhoA/ROCK1 pathway promotes inflammatory bowel Disease by inducing intestinal vascular endothelial barrier damage and M1 macrophage polarization. Biochem Pharmacol. 2022;201:115077.
pubmed: 35537530 doi: 10.1016/j.bcp.2022.115077
Liu L, Wu Y, Wang B, Jiang Y, Lin L, Li X, et al. DA-DRD5 signaling controls Colitis by regulating colonic M1/M2 macrophage polarization. Cell Death Dis. 2021;12(6):500.
pubmed: 34001860 pmcid: 8129081 doi: 10.1038/s41419-021-03778-6
Wang Z, Li C, He X, Xu K, Xue Z, Wang T, et al. Platycodon grandiflorum root fermentation broth reduces inflammation in a mouse IBD model through the AMPK/NF-kappaB/NLRP3 pathway. Food Funct. 2022;13(7):3946–56.
pubmed: 35293398 doi: 10.1039/D1FO03969E
Sheng K, Xu Y, Kong X, Wang J, Zha X, Wang Y. Probiotic Bacillus cereus alleviates Dextran Sulfate Sodium-Induced Colitis in mice through improvement of the intestinal barrier Function, anti-inflammation, and gut microbiota modulation. J Agric Food Chem. 2021;69(49):14810–23.
pubmed: 34677958 doi: 10.1021/acs.jafc.1c03375
Tang B, Zhu J, Fang S, Wang Y, Vinothkumar R, Li M, et al. Pharmacological inhibition of MELK restricts ferroptosis and the inflammatory response in Colitis and colitis-propelled carcinogenesis. Free Radic Biol Med. 2021;172:312–29.
pubmed: 34144192 doi: 10.1016/j.freeradbiomed.2021.06.012
Boutilier AJ, Elsawa SF. Macrophage polarization States in the Tumor Microenvironment. Int J Mol Sci. 2021;22(13):6995.

Auteurs

Kun Zhang (K)

Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.

Jing Guo (J)

Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.

Wenlong Yan (W)

Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.

Lingfen Xu (L)

Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China. xulingfen7408@163.com.

Classifications MeSH