Using land use variable information and a random forest approach to correct spatial mean bias in fused CMAQ fields for particulate and gas species.
Air pollution
CMAQ
Gas species
Particulate species
Random forest model
Spatiotemporal pollutant fields
Journal
Atmospheric environment (Oxford, England : 1994)
ISSN: 1352-2310
Titre abrégé: Atmos Environ (1994)
Pays: England
ID NLM: 9888534
Informations de publication
Date de publication:
01 Apr 2022
01 Apr 2022
Historique:
medline:
1
4
2022
pubmed:
1
4
2022
entrez:
22
12
2023
Statut:
ppublish
Résumé
Accurate spatiotemporal air pollution fields are essential for health impact and epidemiologic studies. There are an increasing number of studies that have combined observational data with spatiotemporally complete air pollution simulations. Land-use, speciated gaseous and particulate pollutant concentrations and chemical transport modeling are fused using a random forest approach to construct daily air quality fields for 12 pollutants (CO, NOx, NO
Identifiants
pubmed: 38131016
doi: 10.1016/j.atmosenv.2022.118982
pmc: PMC10735214
pii:
doi:
Types de publication
Journal Article
Langues
eng