Adulthood effects of developmental exercise in rats.
adolescence
restraint stress
stress resilience
stress response
wheel running
Journal
Developmental psychobiology
ISSN: 1098-2302
Titre abrégé: Dev Psychobiol
Pays: United States
ID NLM: 0164074
Informations de publication
Date de publication:
Jan 2024
Jan 2024
Historique:
revised:
11
10
2023
received:
06
03
2023
accepted:
06
11
2023
medline:
25
12
2023
pubmed:
22
12
2023
entrez:
22
12
2023
Statut:
ppublish
Résumé
Exercise is known to promote efficient function of stress circuitry. The developing brain is malleable and thus exercise during adolescence could potentially exert lasting beneficial effects on the stress response that would be detectable in adulthood. The current study determined whether adolescent wheel running was associated with reduced stress response in adulthood, 6 weeks after cessation of exercise. Male and female adolescent rats voluntarily ran for 6 weeks and then were sedentary for 6 weeks prior to 10 days of chronic restraint stress in adulthood. Fecal corticosterone levels were measured during stress, and escape from the restraint tube was assessed on the final day as a proxy for depressive-like behavior. Anxiety-like behavior was measured 24 h later with the elevated plus maze and locomotor behaviors with the open field. Brain and body measurements were taken immediately following behavioral testing. Developmental exercise and adulthood stress both exerted independent effects on physiological and behavioral outcomes in adulthood. Exercise history increased the odds ratio of escape from restraint stress in males, but did not influence other stress-induced behaviors. In summary, exercise early in life exerted lasting effects, but did not substantially alter the adulthood response to restraint stress.
Substances chimiques
Corticosterone
W980KJ009P
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e22444Subventions
Organisme : NIAAA NIH HHS
ID : R01 AA025380
Pays : United States
Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Ampuero, E., Luarte, A., Santibañez, M., Varas-Godoy, M., Toledo, J., Diaz-Veliz, G., Cavada, G., Rubio, F. J., & Wyneken, U. (2015). Two chronic stress models based on movement restriction in rats respond selectively to antidepressant drugs: Aldolase C as a potential biomarker. The International Journal of Neuropsychopharmacology, 18(10), Article pyv038. https://doi.org/10.1093/ijnp/pyv038
Babaei, A., Nourshahi, M., Fani, M., Entezari, Z., Jameie, S. B., & Haghparast, A. (2021). The effectiveness of continuous and interval exercise preconditioning against chronic unpredictable stress: Involvement of hippocampal PGC-1alpha/FNDC5/BDNF pathway. Journal of Psychiatric Research, 136, 173-183. https://doi.org/10.1016/j.jpsychires.2021.02.006
Bale, T. L., & Epperson, C. N. (2015). Sex differences and stress across the lifespan. Nature Neuroscience, 18(10), 1413-1420. https://doi.org/10.1038/nn.4112
Barone, F. C., Deegan, J. F., Price, W. J., Fowler, P. J., Fondacaro, J. D., & Ormsbee, H. S., 3rd. (1990). Cold-restraint stress increases rat fecal pellet output and colonic transit. American Journal of Physiology, 258(3 Pt 1), G329-G337. https://doi.org/10.1152/ajpgi.1990.258.3.G329
Berchtold, N. C., Castello, N., & Cotman, C. W. (2010). Exercise and time-dependent benefits to learning and memory. Neuroscience, 167(3), 588-597. https://doi.org/10.1016/j.neuroscience.2010.02.050
Borchers, S., Krieger, J. P., Asker, M., Maric, I., & Skibicka, K. P. (2022). Commonly-used rodent tests of anxiety-like behavior lack predictive validity for human sex differences. Psychoneuroendocrinology, 141, Article 105733. https://doi.org/10.1016/j.psyneuen.2022.105733
Bowman, R. E., Micik, R., Gautreaux, C., Fernandez, L., & Luine, V. N. (2009). Sex-dependent changes in anxiety, memory, and monoamines following one week of stress. Physiology & Behavior, 97(1), 21-29. https://doi.org/10.1016/j.physbeh.2009.01.012
Burghardt, P. R., Fulk, L. J., Hand, G. A., & Wilson, M. A. (2004). The effects of chronic treadmill and wheel running on behavior in rats. Brain Research, 1019(1-2), 84-96.
Chang, Y. M., El-Zaatari, M., & Kao, J. Y. (2014). Does stress induce bowel dysfunction? Expert Review of Gastroenterology & Hepatology, 8(6), 583-585. https://doi.org/10.1586/17474124.2014.911659
Cohen, H., Liu, T., Kozlovsky, N., Kaplan, Z., Zohar, J., & Mathe, A. A. (2012). The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology, 37(2), 350-363. https://doi.org/10.1038/npp.2011.230
Cortright, R. N., Chandler, M. P., Lemon, P. W., & DiCarlo, S. E. (1997). Daily exercise reduces fat, protein and body mass in male but not female rats. Physiology & Behavior, 62(1), 105-111. https://doi.org/10.1016/s0031-9384(97)00148-0
Duman, R. S. (2009). Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: Stress and depression. Dialogues in Clinical Neuroscience, 11(3), 239-255.
Duman, R. S., Aghajanian, G. K., Sanacora, G., & Krystal, J. H. (2016). Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nature Medicine, 22(3), 238-249. https://doi.org/10.1038/nm.4050
Fuss, J., Ben Abdallah, N. M., Vogt, M. A., Touma, C., Pacifici, P. G., Palme, R., Witzemann, V., Hellweg, R., & Gass, P. (2010). Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus, 20(3), 364-376. https://doi.org/10.1002/hipo.20634
Gomes da Silva, S., Unsain, N., Mascó, D. H., Toscano-Silva, M., de Amorim, H. A., Silva Araújo, B. H., Simões, P. S., da Graça Naffah-Mazzacoratti, M., Mortara, R. A., Scorza, F. A., Cavalheiro, E. A., & Arida, R. M. (2012). Early exercise promotes positive hippocampal plasticity and improves spatial memory in the adult life of rats. Hippocampus, 22(2), 347-358. https://doi.org/10.1002/hipo.20903
Greenwood, B. N., Loughridge, A. B., Sadaoui, N., Christianson, J. P., & Fleshner, M. (2012). The protective effects of voluntary exercise against the behavioral consequences of uncontrollable stress persist despite an increase in anxiety following forced cessation of exercise. Behavioural Brain Research, 233(2), 314-321. https://doi.org/10.1016/j.bbr.2012.05.017
Haddock, C. K., Rindskopf, D., & Shadish, W. R. (1998). Using odds ratios as effect sizes for meta-analysis of dichotomous data: A primer on methods and issues. Psychological Methods, 3(3), 339-353. https://doi.org/10.1037/1082-989x.3.3.339
Hall, C. (1934). Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. Journal of Comparative Psychology, 18, 385-393.
Hawley, D. F., Morch, K., Christie, B. R., & Leasure, J. L. (2012). Differential response of hippocampal subregions to stress and learning. PLoS ONE, 7(12), Article e53126. https://doi.org/10.1371/journal.pone.0053126
Hoffman, J. R., Ostfeld, I., Kaplan, Z., Zohar, J., & Cohen, H. (2015). Exercise enhances the behavioral responses to acute stress in an animal model of PTSD. Medicine and Science in Sports and Exercise, 47(10), 2043-2052. https://doi.org/10.1249/MSS.0000000000000642
Hopkins, M. E., Nitecki, R., & Bucci, D. J. (2011). Physical exercise during adolescence versus adulthood: Differential effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience, 194, 84-94. https://doi.org/10.1016/j.neuroscience.2011.07.071
Hubel, D. H., & Wiesel, T. N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology, 28(6), 1041-1059.
Juraska, J. M., Sisk, C. L., & DonCarlos, L. L. (2013). Sexual differentiation of the adolescent rodent brain: Hormonal influences and developmental mechanisms. Hormones and Behavior, 64(2), 203-210. https://doi.org/10.1016/j.yhbeh.2013.05.010
Kim, M. H., & Leem, Y. H. (2014). Chronic exercise improves repeated restraint stress-induced anxiety and depression through 5HT1A receptor and cAMP signaling in hippocampus. Journal of Exercise Nutrition & Biochemistry, 18(1), 97-104. https://doi.org/10.5717/jenb.2014.18.1.97
Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24(2), 97-129. https://doi.org/10.1016/S0893-133X(00)00195-0
Koob, G. F., & Le Moal, M. (2005). Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nature Neuroscience, 8(11), 1442-1444. https://doi.org/10.1038/nn1105-1442
Koob, G. F., & Le Moal, M. (2008). Addiction and the brain antireward system. Annual Review of Psychology, 59, 29-53. https://doi.org/10.1146/annurev.psych.59.103006.093548
Lalanza, J. F., Sanchez-Roige, S., Cigarroa, I., Gagliano, H., Fuentes, S., Armario, A., Capdevila, L., & Escorihuela, R. M. (2015). Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats. Scientific Reports, 5, Article 16166. https://doi.org/10.1038/srep16166
Leasure, J. L., & Decker, L. (2009). Social isolation prevents exercise-induced proliferation of hippocampal progenitor cells in female rats. Hippocampus, 19(10), 907-912. https://doi.org/10.1002/hipo.20563
Leasure, J. L., & Jones, M. (2008). Forced and voluntary exercise differentially affect brain and behavior. Neuroscience, 156(3), 456-465.
Leasure, J. L., & Nixon, K. (2010). Exercise neuroprotection in a rat model of binge alcohol consumption. Alcoholism, Clinical and Experimental Research, 34(3), 404-414. https://doi.org/10.1111/j.1530-0277.2009.01105.x
Lepschy, M., Touma, C., Hruby, R., & Palme, R. (2007). Non-invasive measurement of adrenocortical activity in male and female rats. Laboratory Animals, 41(3), 372-387. https://doi.org/10.1258/002367707781282730
Lespine, L. F., & Tirelli, E. (2018). Evidence for a long-term protection of wheel-running exercise against cocaine psychomotor sensitization in adolescent but not in adult mice. Behavioural Brain Research, 349, 63-72. https://doi.org/10.1016/j.bbr.2018.04.054
Luine, V., Gomez, J., Beck, K., & Bowman, R. (2017). Sex differences in chronic stress effects on cognition in rodents. Pharmacology Biochemistry and Behavior, 152, 13-19. https://doi.org/10.1016/j.pbb.2016.08.005
Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71(3), 543-562. https://doi.org/10.1111/1467-8624.00164
Maynard, M. E., Barton, E. A., Robinson, C. R., Wooden, J. I., & Leasure, J. L. (2018). Sex differences in hippocampal damage, cognitive impairment, and trophic factor expression in an animal model of an alcohol use disorder. Brain Structure and Function, 223(1), 195-210. https://doi.org/10.1007/s00429-017-1482-3
McCormick, C. M., Green, M. R., & Simone, J. J. (2017). Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neurobiology of Stress, 6, 31-43. https://doi.org/10.1016/j.ynstr.2016.08.003
McEwen, B. S., & Akil, H. (2020). Revisiting the stress concept: Implications for affective disorders. Journal of Neuroscience, 40(1), 12-21. https://doi.org/10.1523/JNEUROSCI.0733-19.2019
Merkley, C. M., Jian, C., Mosa, A., Tan, Y. F., & Wojtowicz, J. M. (2014). Homeostatic regulation of adult hippocampal neurogenesis in aging rats: Long-term effects of early exercise. Frontiers in Neuroscience, 8, Article 174. https://doi.org/10.3389/fnins.2014.00174
Monnikes, H., Schmidt, B. G., & Tache, Y. (1993). Psychological stress-induced accelerated colonic transit in rats involves hypothalamic corticotropin-releasing factor. Gastroenterology, 104(3), 716-723. https://doi.org/10.1016/0016-5085(93)91006-4
Munive, V., Santi, A., & Torres-Aleman, I. (2016). A concerted action of estradiol and insulin like growth factor I underlies sex differences in mood regulation by exercise. Scientific Reports, 6, Article 25969. https://doi.org/10.1038/srep25969
Nasrallah, P., Haidar, E. A., Stephan, J. S., El Hayek, L., Karnib, N., Khalifeh, M., Barmo, N., Jabre, V., Houbeika, R., Ghanem, A., Nasser, J., Zeeni, N., Bassil, M., & Sleiman, S. F. (2019). Branched-chain amino acids mediate resilience to chronic social defeat stress by activating BDNF/TRKB signaling. Neurobiology of Stress, 11, Article 100170. https://doi.org/10.1016/j.ynstr.2019.100170
O'Leary, J. D., Hoban, A. E., Cryan, J. F., O'Leary, O. F., & Nolan, Y. M. (2019). Differential effects of adolescent and adult-initiated voluntary exercise on context and cued fear conditioning. Neuropharmacology, 145(Pt A), 49-58. https://doi.org/10.1016/j.neuropharm.2018.05.007
O'Leary, J. D., Hoban, A. E., Murphy, A., O'Leary, O. F., Cryan, J. F., & Nolan, Y. M. (2019). Differential effects of adolescent and adult-initiated exercise on cognition and hippocampal neurogenesis. Hippocampus, 29(4), 352-365. https://doi.org/10.1002/hipo.23032
Pellis, S. M., Pellis, V. C., Ham, J. R., & Stark, R. A. (2023). Play fighting and the development of the social brain: The rat's tale. Neuroscience and Biobehavioral Reviews, 145, Article 105037. https://doi.org/10.1016/j.neubiorev.2023.105037
Rhyu, I. J., Bytheway, J. A., Kohler, S. J., Lange, H., Lee, K. J., Boklewski, J., McCormick, K., Williams, N. I., Stanton, G. B., Greenough, W. T., & Cameron, J. L. (2010). Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience, 167(4), 1239-1248. https://doi.org/10.1016/j.neuroscience.2010.03.003
Ricart-Jane, D., Rodriguez-Sureda, V., Benavides, A., Peinado-Onsurbe, J., Lopez-Tejero, M. D., & Llobera, M. (2002). Immobilization stress alters intermediate metabolism and circulating lipoproteins in the rat. Metabolism, 51(7), 925-931. https://doi.org/10.1053/meta.2002.33353
Rosenzweig, E. S., & Barnes, C. A. (2003). Impact of aging on hippocampal function: Plasticity, network dynamics, and cognition. Progress in Neurobiology, 69(3), 143-179.
Rosenzweig, M. R., & Bennett, E. L. (1996). Psychobiology of plasticity: Effects of training and experience on brain and behavior. Behavioural Brain Research, 78(1), 57-65.
Rostami, S., Haghparast, A., & Fayazmilani, R. (2021). The role of pre-pubertal training history on hippocampal neurotrophic factors and glucocorticoid receptor protein levels in adult male rats. Neuroscience Letters, 752, Article 135834. https://doi.org/10.1016/j.neulet.2021.135834
Rybkin, I. I., Zhou, Y., Volaufova, J., Smagin, G. N., Ryan, D. H., & Harris, R. B. (1997). Effect of restraint stress on food intake and body weight is determined by time of day. American Journal of Physiology, 273(5), R1612-R1622. https://doi.org/10.1152/ajpregu.1997.273.5.R1612
Sahnoune, I., Inoue, T., Kesler, S. R., Rodgers, S. P., Sabek, O. M., Pedersen, S. E., Zawaski, J. A., Nelson, K. H., Ris, M. D., Leasure, J. L., & Gaber, M. W. (2018). Exercise ameliorates neurocognitive impairments in a translational model of pediatric radiotherapy. Neuro-Oncology, 20(5), 695-704. https://doi.org/10.1093/neuonc/nox197
Sasse, S. K., Greenwood, B. N., Masini, C. V., Nyhuis, T. J., Fleshner, M., Day, H. E., & Campeau, S. (2008). Chronic voluntary wheel running facilitates corticosterone response habituation to repeated audiogenic stress exposure in male rats. Stress, 11(6), 425-437. https://doi.org/10.1080/10253890801887453
Sciolino, N. R., Smith, J. M., Stranahan, A. M., Freeman, K. G., Edwards, G. L., Weinshenker, D., & Holmes, P. V. (2015). Galanin mediates features of neural and behavioral stress resilience afforded by exercise. Neuropharmacology, 89, 255-264. https://doi.org/10.1016/j.neuropharm.2014.09.029
Serra, F. T., Carvalho, A. D., Araujo, B. H. S., Torres, L. B., Cardoso, F. D. S., Henrique, J. S., Placencia, E. V. D., Lent, R., Gomez-Pinilla, F., Arida, R. M., & Gomes da Silva, S. (2019). Early exercise induces long-lasting morphological changes in cortical and hippocampal neurons throughout of a sedentary period of rats. Scientific Reports, 9(1), Article 13684. https://doi.org/10.1038/s41598-019-50218-9
Shevtsova, O., Tan, Y. F., Merkley, C. M., Winocur, G., & Wojtowicz, J. M. (2017). Early-age running enhances activity of adult-born dentate granule neurons following learning in rats. eNeuro, 4(4), Article ENEURO.0237-17.2017. https://doi.org/10.1523/ENEURO.0237-17.2017
Silverman, M. N., & Deuster, P. A. (2015). Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus, 4(5), Article 20140040.
Spear, L. P. (2000). Neurobehavioral changes in adolescence. Current Directions in Psychological Science, 9(4), 111-114.
Steyn, S. F., Harvey, B. H., & Brink, C. B. (2020). Pre-pubertal, low-intensity exercise does not require concomitant venlafaxine to induce robust, late-life antidepressant effects in Flinders sensitive line rats. European Journal of Neuroscience, 52(8), 3979-3994. https://doi.org/10.1111/ejn.14757
Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9(4), 526-533.
Stranahan, A. M., Lee, K., & Mattson, M. P. (2008). Central mechanisms of HPA axis regulation by voluntary exercise. NeuroMolecular Medicine, 10(2), 118-127. https://doi.org/10.1007/s12017-008-8027-0
Thanos, P. K., Cavigelli, S. A., Michaelides, M., Olvet, D. M., Patel, U., Diep, M. N., & Volkow, N. D. (2009). A non-invasive method for detecting the metabolic stress response in rodents: Characterization and disruption of the circadian corticosterone rhythm. Physiological Research, 58(2), 219-228.
van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266-270.
Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols, 2(2), 322-328. https://doi.org/10.1038/nprot.2007.44
West, R. K., Wooden, J. I., Barton, E. A., & Leasure, J. L. (2019). Recurrent binge ethanol is associated with significant loss of dentate gyrus granule neurons in female rats despite concomitant increase in neurogenesis. Neuropharmacology, 148, 272-283. https://doi.org/10.1016/j.neuropharm.2019.01.016
Wolkowitz, O. M., Epel, E. S., Reus, V. I., & Mellon, S. H. (2010). Depression gets old fast: Do stress and depression accelerate cell aging? Depression and Anxiety, 27(4), 327-338. https://doi.org/10.1002/da.20686
Wood, G. E., Norris, E. H., Waters, E., Stoldt, J. T., & McEwen, B. S. (2008). Chronic immobilization stress alters aspects of emotionality and associative learning in the rat. Behavioral Neuroscience, 122(2), 282-292. https://doi.org/10.1037/0735-7044.122.2.282
Xiang, X., Huang, W., Haile, C. N., & Kosten, T. A. (2011). Hippocampal GluR1 associates with behavior in the elevated plus maze and shows sex differences. Behavioural Brain Research, 222(2), 326-331. https://doi.org/10.1016/j.bbr.2011.03.068
Zhang, W., Hetzel, A., Shah, B., Atchley, D., Blume, S. R., Padival, M. A., & Rosenkranz, J. A. (2014). Greater physiological and behavioral effects of interrupted stress pattern compared to daily restraint stress in rats. PLoS ONE, 9(7), Article e102247. https://doi.org/10.1371/journal.pone.0102247