The Snf5-Hsf1 transcription module synergistically regulates stress responses and pathogenicity by maintaining ROS homeostasis in Sclerotinia sclerotiorum.

ROS homeostasis Snf5-Hsf1 module antioxidant enzyme heat shock protein pathogenicity phosphorylation stress response

Journal

The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884

Informations de publication

Date de publication:
22 Dec 2023
Historique:
received: 31 07 2023
accepted: 12 11 2023
medline: 23 12 2023
pubmed: 23 12 2023
entrez: 22 12 2023
Statut: aheadofprint

Résumé

The SWI/SNF complex is guided to the promoters of designated genes by its co-operator to activate transcription in a timely and appropriate manner to govern development, pathogenesis, and stress responses in fungi. Nevertheless, knowledge of the complexes and their co-operator in phytopathogenic fungi is still fragmented. We demonstrate that the heat shock transcription factor SsHsf1 guides the SWI/SNF complex to promoters of heat shock protein (hsp) genes and antioxidant enzyme genes using biochemistry and pharmacology. This is accomplished through direct interaction with the complex subunit SsSnf5 under heat shock and oxidative stress. This results in the activation of their transcription and mediates histone displacement to maintain reactive oxygen species (ROS) homeostasis. Genetic results demonstrate that the transcription module formed by SsSnf5 and SsHsf1 is responsible for regulating morphogenesis, stress tolerance, and pathogenicity in Sclerotinia sclerotiorum, especially by directly activating the transcription of hsp genes and antioxidant enzyme genes counteracting plant-derived ROS. Furthermore, we show that stress-induced phosphorylation of SsSnf5 is necessary for the formation of the transcription module. This study establishes that the SWI/SNF complex and its co-operator cooperatively regulate the transcription of hsp genes and antioxidant enzyme genes to respond to host and environmental stress in the devastating phytopathogenic fungi.

Identifiants

pubmed: 38135652
doi: 10.1111/nph.19484
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Key Research and Development Program of China
ID : 2019YFE0114200
Organisme : National Natural Science Foundation of China
ID : 31972978
Organisme : National Natural Science Foundation of China
ID : 32272484

Informations de copyright

© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.

Références

Barisic D, Stadler MB, Iurlaro M, Schübeler D. 2019. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569: 136-140.
Bolton MD, Thomma BP, Nelson BD. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7: 1-16.
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. 2019. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathogens 15: e1007823.
Butler MJ, Gardiner RB, Day AW. 2009. Melanin synthesis by Sclerotinia sclerotiorum. Mycologia 101: 296-304.
Centore RC, Sandoval GJ, Soares LMM, Kadoch C, Chan HM. 2020. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends in Genetics 36: 936-950.
Chen G, Wang D, Wu B, Yan F, Xue H, Wang Q, Quan S, Chen Y. 2020. Taf14 recognizes a common motif in transcriptional machineries and facilitates their clustering by phase separation. Nature Communications 11: 4206.
Chen X, Pei Z, Liu H, Huang J, Chen X, Luo C, Hsiang T, Zheng L. 2022. Host-induced gene silencing of fungal-specific genes of Ustilaginoidea virens confers effective resistance to rice false smut. Plant Biotechnology Journal 20: 253-255.
Clapier CR, Iwasa J, Cairns BR, Peterson CL. 2017. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews. Molecular Cell Biology 18: 407-422.
Cong J, Xiao K, Jiao W, Zhang C, Zhang X, Liu J, Zhang Y, Pan H. 2022. The coupling between cell wall integrity mediated by MAPK kinases and SsFkh1 is involved in sclerotia formation and pathogenicity of Sclerotinia sclerotiorum. Frontiers in Microbiology 13: 816091.
Cosma MP, Tanaka T, Nasmyth K. 2016. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 166: 781.
Cruz-Mireles N, Osés-Ruiz M, Derbyshire P, Jégousse C, Ryder LS, Bautista MJ, Eseola AB, Sklenar J, Tang B, Yan X et al. 2023. The phosphorylation landscape of infection-related development by the rice blast fungus. BioRxiv. doi: 10.1101/2023.08.19.553964.
Ding Y, Mei J, Chai Y, Yang W, Mao Y, Yan B, Yu Y, Disi JO, Rana K, Li J et al. 2020. Sclerotinia sclerotiorum utilizes host-derived copper for ROS detoxification and infection. PLoS Pathogens 16: e1008919.
Driedonks N, Xu J, Peters JL, Park S, Rieu I. 2015. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Frontiers in Plant Science 6: 999.
Erkina TY, Tschetter PA, Erkine AM. 2008. Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes. Molecular and Cellular Biology 28: 1207-1217.
Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F et al. 1998. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. The Journal of Biological Chemistry 273: 18623-18632.
Freitas ESKSLCS, Gonçales RA, Neves BJ, Soares CMA, Pereira M. 2020. Setting new routes for antifungal drug discovery against pathogenic fungi. Current Pharmaceutical Design 26: 1509-1520.
Gao X, Wang Q, Feng Q, Zhang B, He C, Luo H, An B. 2022. Heat shock transcription factor CgHSF1 is required for melanin biosynthesis, appressorium formation, and pathogenicity in Colletotrichum gloeosporioides. Journal of Fungi 8: 175.
Gong Y, Li T, Yu C, Sun S. 2017. Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal targets. Frontiers in Cellular and Infection Microbiology 7: 520.
Gross DS, Adams CC, Lee S, Stentz B. 1993. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO Journal 12: 3931-3945.
Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y et al. 2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathogens 7: e1001302.
Hahn JS, Hu Z, Thiele DJ, Iyer VR. 2004. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Molecular and Cellular Biology 24: 5249-5256.
Han H, Lv F, Liu Z, Chen T, Xue T, Liang W, Liu M. 2023. BcTaf14 regulates growth and development, virulence, and stress responses in the phytopathogenic fungus Botrytis cinerea. Molecular Plant Pathology 23: 849-865.
Han Y, Reyes AA, Malik S, He Y. 2020. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579: 452-455.
Hassan GS. 2013. Chapter six-menadione. In: Brittain HG, ed. Profiles of drug substances, excipients and related methodology, vol. 38. Academic Press, 227-313.
Hossain S, Lash E, Veri AO, Cowen LE. 2021. Functional connections between cell cycle and proteostasis in the regulation of Candida albicans morphogenesis. Cell Reports 34: 108781.
Jian Y, Liu Z, Wang H, Chen Y, Yin Y, Zhao Y, Ma Z. 2021a. Interplay of two transcription factors for recruitment of the chromatin remodeling complex modulates fungal nitrosative stress response. Nature Communications 12: 2576.
Jian Y, Shim W-B, Ma Z. 2021b. Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions. Stress Biology 1: 18.
Jiao W, Yu H, Chen X, Xiao K, Jia D, Wang F, Zhang Y, Pan H. 2022a. The SsAtg1 activating autophagy is required for sclerotia formation and pathogenicity in Sclerotinia sclerotiorum. Journal of Fungi (Basel) 8: 1314.
Jiao W, Yu H, Cong J, Xiao K, Zhang X, Liu J, Zhang Y, Pan H. 2022b. Transcription factor SsFoxE3 activating SsAtg8 is critical for sclerotia, compound appressoria formation, and pathogenicity in Sclerotinia sclerotiorum. Molecular Plant Pathology 23: 204-217.
Kassis S, Grondin M, Averill-Bates DA. 2021. Heat shock increases levels of reactive oxygen species, autophagy and apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1868: 118924.
Koch A, Wassenegger M. 2021. Host-induced gene silencing - mechanisms and applications. New Phytologist 231: 54-59.
Konieczny P, Xing Y, Sidhu I, Subudhi I, Mansfield KP, Hsieh B, Biancur DE, Larsen SB, Cammer M, Li D et al. 2022. Interleukin-17 governs hypoxic adaptation of injured epithelium. Science 377: eabg9302.
Krakowiak J, Zheng X, Patel N, Feder ZA, Anandhakumar J, Valerius K, Gross DS, Khalil AS, Pincus D. 2018. Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response. eLife 7: e31668.
Leach MD, Budge S, Walker L, Munro C, Cowen LE, Brown AJ. 2012. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast. PLoS Pathogens 8: e1003069.
Leach MD, Farrer RA, Tan K, Miao Z, Walker LA, Cuomo CA, Wheeler RT, Brown AJ, Wong KH, Cowen LE. 2016. Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans. Nature Communications 7: 11704.
Lee S, Carlson T, Christian N, Lea K, Kedzie J, Reilly JP, Bonner JJ. 2000. The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Molecular Biology of the Cell 11: 1753-1764.
Li J, Zhang Y, Zhang Y, Yu PL, Pan H, Rollins JA. 2018. Introduction of large sequence inserts by CRISPR-Cas9 To create pathogenicity mutants in the multinucleate filamentous pathogen Sclerotinia sclerotiorum. MBio 9: e00567.
Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y et al. 2014. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host & Microbe 15: 329-338.
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. 2018. Sssfh1, a gene encoding a putative component of the rsc chromatin remodeling complex, is involved in hyphal growth, reactive oxygen species accumulation, and pathogenicity in Sclerotinia sclerotiorum. Frontiers in Microbiology 9: 1828.
Liu X, Zhou Q, Guo Z, Liu P, Shen L, Chai N, Qian B, Cai Y, Wang W, Yin Z et al. 2020. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. eLife 9: e61605.
Liu Z, Jian Y, Chen Y, Kistler HC, He P, Ma Z, Yin Y. 2019. A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum. Nature Communications 10: 1228.
Lu Y, Su C, Mao X, Raniga PP, Liu H, Chen J. 2008. Efg1-mediated recruitment of NuA4 to promoters is required for hypha-specific Swi/Snf binding and activation in Candida albicans. Molecular Biology of the Cell 19: 4260-4272.
Mao X, Cao F, Nie X, Liu H, Chen J. 2006. The Swi/Snf chromatin remodeling complex is essential for hyphal development in Candida albicans. FEBS Letters 580: 2615-2622.
Peterson CL, Workman JL. 2000. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Current Opinion in Genetics & Development 10: 187-192.
Proft M, Struhl K. 2002. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Molecular Cell 9: 1307-1317.
Ramirez-Prado JS, Benhamed M. 2021. New partners for old friends: plant SWI/SNF complexes. Molecular Plant 14: 870-872.
Rana K, Ding Y, Banga SS, Liao H, Zhao S, Yu Y, Qian W. 2021. Sclerotinia sclerotiorum Thioredoxin1 (SsTrx1) is required for pathogenicity and oxidative stress tolerance. Molecular Plant Pathology 22: 1413-1426.
Rodrigues ET, Lopes I, Pardal M. 2013. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review. Environment International 53: 18-28.
Rollins JA. 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Molecular Plant-Microbe Interactions 16: 785-795.
Sanz AB, García R, Rodríguez-Peña JM, Díez-Muñiz S, Nombela C, Peterson CL, Arroyo J. 2012. Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Molecular Biology of the Cell 23: 2805-2817.
Shanle EK, Andrews FH, Meriesh H, Mcdaniel SL, Dronamraju R, Difiore JV, Jha D, Wozniak GG, Bridgers JB, Kerschner JL et al. 2015. Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response. Genes & Development 29: 1795-1800.
Sheng Y, Wang Y, Meijer HJ, Yang X, Hua C, Ye W, Tao K, Liu X, Govers F, Wang Y. 2015. The heat shock transcription factor PsHSF1 of Phytophthora sojae is required for oxidative stress tolerance and detoxifying the plant oxidative burst. Environmental Microbiology 17: 1351-1364.
Shivaswamy S, Iyer VR. 2008. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Molecular and Cellular Biology 28: 2221-2234.
Simone C. 2006. SWI/SNF: the crossroads where extracellular signaling pathways meet chromatin. Journal of Cellular Physiology 207: 309-314.
Smith CL, Horowitz-Scherer R, Flanagan JF, Woodcock CL, Peterson CL. 2003. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nature Structural Biology 10: 141-145.
Tian L, Li J, Xu Y, Qiu Y, Li X. 2023. A MAP kinase cascade broadly regulates development and virulence of Sclerotinia Sclerotiorum and can be targeted by HIGS for disease control. BioRxiv. doi: 10.1101/2023.03.01.530680.
Velásquez AC, Castroverde CDM, He SY. 2018. Plant-pathogen warfare under changing climate conditions. Current Biology 28: R619-R634.
Veloukas T, Markoglou AN, Karaoglanidis GS. 2013. Differential effect of SdhB gene mutations on the sensitivity to SDHI fungicides in Botrytis cinerea. Plant Disease 97: 118-122.
Veri AO, Robbins N, Cowen LE. 2018. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Research 18: foy041.
Willbur JF, Fall ML, Bloomingdale C, Byrne AM, Chapman SA, Isard SA, Magarey RD, Mccaghey MM, Mueller BD, Russo JM et al. 2018. Weather-based models for assessing the risk of Sclerotinia sclerotiorum apothecial presence in soybean (Glycine max) fields. Plant Disease 102: 73-84.
Wilson CJ, Chao DM, Imbalzano AN, Schnitzler GR, Kingston RE, Young RA. 1996. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84: 235-244.
Xu XW, Zhao R, Xu XZ, Tang L, Shi W, Chen D, Peng JB, Bhadauria V, Zhao WS, Yang J et al. 2022. MoSnf5 regulates fungal virulence, growth, and conidiation in Magnaporthe oryzae. Journal of Fungi 9: 18.
Xu Y, Ao K, Tian L, Qiu Y, Huang X, Liu X, Hoy R, Zhang Y, Rashid KY, Xia S et al. 2022. A forward genetic screen in Sclerotinia sclerotiorum revealed the transcriptional regulation of its sclerotial melanization pathway. Molecular Plant-Microbe Interactions 35: 244-256.
Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. 2022. Oxidative stress response pathways in fungi. Cellular and Molecular Life Sciences 79: 333.
Yamamoto A, Mizukami Y, Sakurai H. 2005. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. The Journal of Biological Chemistry 280: 11911-11919.
Yu Y, Du J, Wang Y, Zhang M, Huang Z, Cai J, Fang A, Yang Y, Qing L, Bi C et al. 2019. Survival factor 1 contributes to the oxidative stress response and is required for full virulence of Sclerotinia sclerotiorum. Molecular Plant Pathology 20: 895-906.
Zhang H, Zhao Q, Guo X, Guo M, Qi Z, Tang W, Dong Y, Ye W, Zheng X, Wang P et al. 2014. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. Molecular Plant-Microbe Interactions 27: 446-460.
Zhang M, Trushina NK, Lang T, Hahn M, Pasmanik-Chor M, Sharon A. 2023. Serine peptidases and increased amounts of soluble proteins contribute to heat priming of the plant pathogenic fungus Botrytis Cinerea. MBio 14: e0107723.
Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J, Khalil AS, Pincus D. 2016. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. eLife 5: e18638.
Zhou G, Ying SH, Hu Y, Fang X, Feng MG, Wang J. 2018. Roles of three HSF domain-containing proteins in mediating heat-shock protein genes and sustaining asexual cycle, stress tolerance, and virulence in Beauveria bassiana. Frontiers in Microbiology 9: 1677.
Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94: 471-480.

Auteurs

Kunqin Xiao (K)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Ling Liu (L)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Ruonan He (R)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Jeffrey A Rollins (JA)

Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA.

Anmo Li (A)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Guiping Zhang (G)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Xiaoyue He (X)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Rui Wang (R)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Jinliang Liu (J)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Xianghui Zhang (X)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Yanhua Zhang (Y)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Hongyu Pan (H)

College of Plant Sciences, Jilin University, Changchun, 130062, China.

Classifications MeSH