Epithelial SIRT6 governs IL-17A pathogenicity and drives allergic airway inflammation and remodeling.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 Dec 2023
Historique:
received: 13 02 2023
accepted: 04 12 2023
medline: 23 12 2023
pubmed: 23 12 2023
entrez: 22 12 2023
Statut: epublish

Résumé

Dysregulation of IL-17A is closely associated with airway inflammation and remodeling in severe asthma. However, the molecular mechanisms by which IL-17A is regulated remain unclear. Here we identify epithelial sirtuin 6 (SIRT6) as an epigenetic regulator that governs IL-17A pathogenicity in severe asthma. Mice with airway epithelial cell-specific deletion of Sirt6 are protected against allergen-induced airway inflammation and remodeling via inhibiting IL-17A-mediated inflammatory chemokines and mesenchymal reprogramming. Mechanistically, SIRT6 directly interacts with RORγt and mediates RORγt deacetylation at lysine 192 via its PPXY motifs. SIRT6 promotes RORγt recruitment to the IL-17A gene promoter and enhances its transcription. In severe asthma patients, high expression of SIRT6 positively correlates with airway remodeling and disease severity. SIRT6 inhibitor (OSS_128167) treatment significantly attenuates airway inflammation and remodeling in mice. Collectively, these results uncover a function for SIRT6 in regulating IL-17A pathogenicity in severe asthma, implicating SIRT6 as a potential therapeutic target for severe asthma.

Identifiants

pubmed: 38135684
doi: 10.1038/s41467-023-44179-x
pii: 10.1038/s41467-023-44179-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8525

Informations de copyright

© 2023. The Author(s).

Références

Reddel, H. K. et al. Global initiative for asthma strategy 2021: executive summary and rationale for key changes. Eur. Respir. J. 59, 2102730 (2021).
pubmed: 34667060 doi: 10.1183/13993003.02730-2021
Brusselle, G. G. & Koppelman, G. H. Biologic therapies for severe ssthma. N. Engl. J. Med. 386, 157–171 (2022).
pubmed: 35020986 doi: 10.1056/NEJMra2032506
Busse, W. W. et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 188, 1294–1302 (2013).
pubmed: 24200404 doi: 10.1164/rccm.201212-2318OC
Krishnamoorthy, N. et al. Neutrophil cytoplasts induce TH17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci. Immunol. 3, eaao4747 (2018).
pubmed: 30076281 pmcid: 6320225 doi: 10.1126/sciimmunol.aao4747
Tian, B. et al. Mucosal bromodomain-containing protein 4 mediates aeroallergen-induced inflammation and remodeling. J. Allergy Clin. Immunol. 143, 1380–1394.e1389 (2019).
pubmed: 30321559 doi: 10.1016/j.jaci.2018.09.029
Chesné, J. et al. IL-17 in severe asthma. Where do we stand? Am. J. Respir. Crit. Care Med. 190, 1094–1101 (2014).
pubmed: 25162311 doi: 10.1164/rccm.201405-0859PP
Salazar, Y. et al. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. J. Clin. Invest. 130, 3560–3575 (2020).
pubmed: 32229721 pmcid: 7324180 doi: 10.1172/JCI124037
Vittal, R. et al. IL-17 induces type V collagen overexpression and EMT via TGF-β-dependent pathways in obliterative bronchiolitis. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L401–L414 (2013).
pubmed: 23262228 doi: 10.1152/ajplung.00080.2012
Steelant, B. et al. Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J. Allergy Clin. Immunol. 144, 1242–1253.e1247 (2019).
pubmed: 31082457 doi: 10.1016/j.jaci.2019.04.027
Diallo, I. et al. Current trends in protein acetylation analysis. Exp. Rev. Proteom. 16, 139–159 (2019).
doi: 10.1080/14789450.2019.1559061
Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022).
pubmed: 35042977 doi: 10.1038/s41580-021-00441-y
Herskovits, A. Z. & Guarente, L. Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res. 23, 746–758 (2013).
pubmed: 23689277 pmcid: 3674397 doi: 10.1038/cr.2013.70
Kugel, S. et al. SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell 165, 1401–1415 (2016).
pubmed: 27180906 pmcid: 4892983 doi: 10.1016/j.cell.2016.04.033
Wang, H. et al. SIRT6 controls hematopoietic stem cell homeostasis through epigenetic regulation of Wnt signaling. Cell Stem Cell 18, 495–507 (2016).
pubmed: 27058938 doi: 10.1016/j.stem.2016.03.005
Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).
pubmed: 31209336 doi: 10.1038/s41591-019-0468-5
Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).
pubmed: 26560028 pmcid: 4849281 doi: 10.1038/nature16064
Jia, A. et al. Comparison of the roles of house dust mite allergens, ovalbumin and lipopolysaccharides in the sensitization of mice to establish a model of severe neutrophilic asthma. Exp. Ther. Med. 14, 2126–2134 (2017).
pubmed: 28962133 pmcid: 5609096 doi: 10.3892/etm.2017.4776
Kwak, D. W. et al. Leukotriene B(4) receptors play critical roles in house dust mites-induced neutrophilic airway inflammation and IL-17 production. Biochem. Biophys. Res. Commun. 534, 646–652 (2021).
pubmed: 33256981 doi: 10.1016/j.bbrc.2020.11.027
Eifan, A. O. et al. Severe persistent allergic rhinitis inflammation but no histologic features of structural upper airway remodeling. Am. J. Respir. Crit. Care Med. 192, 1431–1439 (2015).
pubmed: 26378625 doi: 10.1164/rccm.201502-0339OC
Nograles, K. E. et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159, 1092–1102 (2008).
pubmed: 18684158 pmcid: 2724264
Kathania, M. et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat. Immunol. 17, 997–1004 (2016).
pubmed: 27322655 doi: 10.1038/ni.3488
Jendzjowsky, N. G. & Kelly, M. M. The role of airway myofibroblasts in asthma. Chest 156, 1254–1267 (2019).
pubmed: 31472157 doi: 10.1016/j.chest.2019.08.1917
Tennen, R. I. et al. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mech. Ageing Dev. 131, 185–192 (2010).
pubmed: 20117128 pmcid: 2846990 doi: 10.1016/j.mad.2010.01.006
Jiang, H. et al. SIRT6 inhibitor, OSS_128167 restricts hepatitis B virus transcription and replication through targeting transcription factor peroxisome proliferator-activated receptors α. Front. Pharmacol. 10, 1270 (2019).
pubmed: 31708789 pmcid: 6823301 doi: 10.3389/fphar.2019.01270
Mao, Z. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446 (2011).
pubmed: 21680843 pmcid: 5472447 doi: 10.1126/science.1202723
Liu, M. et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat. Commun. 8, 413 (2017).
pubmed: 28871079 pmcid: 5583183 doi: 10.1038/s41467-017-00498-4
Jang, H. Y. et al. Overexpression of sirtuin 6 suppresses allergic airway inflammation through deacetylation of GATA3. J. Allergy Clin. Immunol. 138, 1452–1455.e1413 (2016).
pubmed: 27421859 doi: 10.1016/j.jaci.2016.05.019
Pan, H. et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell. Res. 26, 190–205 (2016).
pubmed: 26768768 pmcid: 4746611 doi: 10.1038/cr.2016.4
Hou, T. et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. Mol. Cell. 82, 4099–4115.e4099 (2022).
pubmed: 36208627 doi: 10.1016/j.molcel.2022.09.018
Ming, M. et al. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res. 74, 5925–5933 (2014).
pubmed: 25320180 pmcid: 4203414 doi: 10.1158/0008-5472.CAN-14-1308
Li, Z. et al. SIRT6 drives epithelial-to-mesenchymal transition and metastasis in non-small cell lung cancer via snail-dependent transrepression of KLF4. J. Exp. Clin. Cancer Res. 37, 323 (2018).
pubmed: 30577808 pmcid: 6303940 doi: 10.1186/s13046-018-0984-z
Rui, H. B. et al. Sirtuin 6 promotes cell aging of myeloma cell line KM-HM (31) by via Hippo signal pathway. Eur. Rev. Med. Pharmacol. Sci. 22, 6880–6884 (2018).
pubmed: 30402853
Xiong, X. et al. Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity. Nat. Commun. 13, 5192 (2022).
pubmed: 36057627 pmcid: 9440928 doi: 10.1038/s41467-022-32846-4
Lambrecht, B. N. et al. The airway epithelium in asthma. Nat. Med. 18, 684–692 (2012).
pubmed: 22561832 doi: 10.1038/nm.2737
Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 2, 65–80 (2015).
doi: 10.1016/j.cmet.2014.12.005
Schnyder-Candrian, S. et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 203, 2715–2725 (2006).
pubmed: 17101734 pmcid: 2118159 doi: 10.1084/jem.20061401
Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).
pubmed: 12354389 doi: 10.1016/S1074-7613(02)00391-6
Bullens, D. M. et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res. 7, 135 (2006).
pubmed: 17083726 pmcid: 1636037 doi: 10.1186/1465-9921-7-135
Park, S. J. et al. Phosphoinositide 3-kinase δ inhibitor suppresses interleukin-17 expression in a murine asthma model. Eur. Respir. J. 36, 1448–1459 (2010).
pubmed: 20351038 doi: 10.1183/09031936.00106609
Ouyang, L. et al. Emerging roles and therapeutic implications of HDAC2 and IL-17A in steroid-resistant asthma. Chin. Med. J. Pulm. Crit. Care Med. 1, 108–112 (2023).
doi: 10.1016/j.pccm.2023.04.003
Corren, J. New targeted therapies for uncontrolled asthma. J. Allergy Clin. Immunol. Pr. 7, 1394–1403 (2019).
doi: 10.1016/j.jaip.2019.03.022
Okada, A. K. et al. Lysine acetylation regulates the interaction between proteins and membranes. Nat. Commun. 12, 6466 (2021).
pubmed: 34753925 pmcid: 8578602 doi: 10.1038/s41467-021-26657-2
Ray, A. et al. Deacetylation of H4 lysine16 affects acetylation of lysine residues in histone H3 and H4 and promotes transcription of constitutive genes. Epigenetics 16, 597–617 (2021).
pubmed: 32795161 doi: 10.1080/15592294.2020.1809896
Shi, Y. et al. Resveratrol enhances HBV replication through activating Sirt1-PGC-1α-PPARα pathway. Sci. Rep. 6, 24744 (2016).
pubmed: 27098390 pmcid: 4838842 doi: 10.1038/srep24744
Yuan, Z. et al. Sirt1 regulates the function of the nijmegen breakage syndrome protein. Mol. Cell 27, 149–162 (2007).
pubmed: 17612497 pmcid: 2679807 doi: 10.1016/j.molcel.2007.05.029
Lee, J. T. et al. Sirt1: Regulator of p53 deacetylation. Genes Cancer 4, 112–117 (2013).
pubmed: 24020002 pmcid: 3764473 doi: 10.1177/1947601913484496
Lai, T. et al. HDAC2 suppresses IL17A-mediated airway remodeling in human and experimental modeling of COPD. Chest 153, 863–875 (2018).
pubmed: 29113816 doi: 10.1016/j.chest.2017.10.031
Krishnamoorthy, N. et al. Neutrophil cytoplasts induce T(H)17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci. Immunol. 3, eaao4747 (2018).
pubmed: 30076281 pmcid: 6320225 doi: 10.1126/sciimmunol.aao4747
Qian, G. et al. LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. J. Exp. Med. 215, 2397–2412 (2018).
pubmed: 30021797 pmcid: 6122967 doi: 10.1084/jem.20172225
Wang, L. et al. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proc. Natl Acad. Sci. USA 118, e2005590118 (2021).
pubmed: 33397719 pmcid: 7812791 doi: 10.1073/pnas.2005590118

Auteurs

Jingyun Quan (J)

Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
Department of Health Management & Physical Examination Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Xiaoxia Wen (X)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Guomei Su (G)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Yu Zhong (Y)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Tong Huang (T)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Zhilin Xiong (Z)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Jiewen Huang (J)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Yingying Lv (Y)

Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.

Shihai Li (S)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Shuhua Luo (S)

Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Chaole Luo (C)

Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.

Xin Cai (X)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Xianwen Lai (X)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Yuanyuan Xiang (Y)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Song Guo Zheng (SG)

Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.

Yiming Shao (Y)

Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.

Haitao Lin (H)

Department of Health Management & Physical Examination Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Xiao Gao (X)

Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China. gaoxiao7187676@126.com.

Jing Tang (J)

Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China. tanglitangjing@126.com.

Tianwen Lai (T)

Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China. laitianwen2011@163.com.
Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China. laitianwen2011@163.com.

Classifications MeSH