Bioaccumulation of mercury in Lake Michigan painted turtles (Chrysemys picta).

Bioaccumulation Coastal wetlands Freshwater turtles Heavy metals Mercury

Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
22 Dec 2023
Historique:
received: 10 07 2023
accepted: 10 11 2023
medline: 23 12 2023
pubmed: 23 12 2023
entrez: 22 12 2023
Statut: epublish

Résumé

Mercury (Hg) contamination of aquatic environments can lead to bioaccumulation in organisms, but most previous work has focused on fish and not on semi-aquatic reptiles such as turtles that traverse both terrestrial and aquatic habitats. Here, we analyzed total Hg (THg) concentrations in 30 painted turtles (Chrysemys picta) collected from Lake Michigan (USA) coastal wetlands in 2013 to determine if (1) turtles bioaccumulated THg from the environment, (2) concentrations differed between turtle liver and muscle tissue, and (3) tissue concentrations were related to environmental concentrations (e.g., sediment THg). All individual turtles had detectable THg concentrations in both liver and muscle tissue. On average, THg concentrations were over three times higher in liver tissue compared to muscle tissue. We found a positive linear relationship between muscle THg concentrations and turtle body mass, a proxy for age, suggesting bioaccumulation in this species. Neither liver nor muscle THg concentrations followed the sediment contaminant gradient in the wetlands. Despite this, location was a strong predictor of tissue concentration in a linear model suggesting that other site-specific characteristics may be important. Overall, our results demonstrate that painted turtles accumulate mercury in liver and muscle tissues at different rates, which may be constrained by local conditions. Further research is needed to better understand the relationship between environmental mercury concentrations and body burdens in animals like turtles that traverse habitats. In addition, long-lived turtles could be incorporated into pollution monitoring programs to provide a more holistic picture of food web contamination and ecosystem health.

Identifiants

pubmed: 38135786
doi: 10.1007/s10661-023-12129-1
pii: 10.1007/s10661-023-12129-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

75

Subventions

Organisme : U.S. Environmental Protection Agency
ID : GL-00E00612-0
Organisme : U.S. Environmental Protection Agency
ID : GL-00E00612-0
Organisme : U.S. Environmental Protection Agency
ID : GL-00E00612-0
Organisme : University of Notre Dame
ID : College of Science Summer Undergraduate Research Fellowship

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Albert, D. A., Wilcox, D. A., Ingram, J. W., & Thompson, T. A. (2005). Hydrogeomorphic Classification for Great Lakes Coastal Wetlands. Journal of Great Lakes Research, 31, 129–146. https://doi.org/10.1016/S0380-1330(05)70294-X
doi: 10.1016/S0380-1330(05)70294-X
Amos, H. M., Jacob, D. J., Streets, D. G., & Sunderland, E. M. (2013). Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochemical Cycles, 27(2), 410–421. https://doi.org/10.1002/gbc.20040
doi: 10.1002/gbc.20040
Bartoń, K. (2022). MuMIn: Multi-Model Inference. R package version 1.46.0. https://cran.r-project.org/web/packages/MuMIn/index.html
Bergeron, C. M., Husak, J. F., Unrine, J. M., Romanek, C. S., & Hopkins, W. A. (2007). Influence of feeding ecology on blood mercury concentrations in four species of turtles. Environmental Toxicology and Chemistry, 26(8), 1733–1741. https://doi.org/10.1897/06-594R.1
doi: 10.1897/06-594R.1
Bloom, N. S. (1992). On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49(5), 1010–1017. https://doi.org/10.1139/f92-113
doi: 10.1139/f92-113
Buckman, K. L., Seelen, E. A., Mason, R. P., Balcom, P., Taylor, V. F., Ward, J. E., & Chen, C. Y. (2019). Sediment organic carbon and temperature effects on methylmercury concentration: A mesocosm experiment. Science of the Total Environment, 666, 1316–1326. https://doi.org/10.1016/j.scitotenv.2019.02.302
doi: 10.1016/j.scitotenv.2019.02.302
Burger, J. (2002). Metals in tissues of diamondback terrapin from New Jersey. Environmental Monitoring and Assessment, 77(3), 255–263. https://doi.org/10.1023/A:1016076305837
doi: 10.1023/A:1016076305837
Chételat, J., Ackerman, J. T., Eagles-Smith, C. A., & Hebert, C. E. (2020). Methylmercury exposure in wildlife: A review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Science of the Total Environment, 711, 135117. https://doi.org/10.1016/j.scitotenv.2019.135117
doi: 10.1016/j.scitotenv.2019.135117
Cizdziel, J., Hinners, T., Cross, C., & Pollard, J. (2003). Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. Journal of Environmental Monitoring, 5(5), 802–807. https://doi.org/10.1039/B307641P
doi: 10.1039/B307641P
Clarkson, T. W. (1997). The toxicology of mercury. Critical Reviews in Clinical Laboratory Sciences, 34(4), 369–403. https://doi.org/10.3109/10408369708998098
doi: 10.3109/10408369708998098
Compeau, G. C., & Bartha, R. (1985). Principal Methylators. Microbiology, 50(2), 498–502.
Cooper, M. J., Rediske, R. R., Uzarski, D. G., & Burton, T. M. (2009). Sediment Contamination and Faunal Communities in Two Subwatersheds of Mona Lake. Michigan. Journal of Environmental Quality, 38(3), 1255–1265. https://doi.org/10.2134/jeq2008.0429
doi: 10.2134/jeq2008.0429
Cooper, M. J., Steinman, A. D., & Uzarski, D. G. (2013). Influence of geomorphic setting on the metabolism of Lake Huron fringing wetlands. Limnology and Oceanography, 58(2), 452–464. https://doi.org/10.4319/lo.2013.58.2.0452
doi: 10.4319/lo.2013.58.2.0452
Crewe, T. L., Timmermans, S. T. A., & Jones, K. E. (2005). The Marsh Monitoring Program Annual Report, 1995–2003. Bird Studies Canada. https://www.bsc-eoc.org/download/mmpreport2004.pdf
DeCatanzaro, R., & Chow-Fraser, P. (2010). Relationship of road density and marsh condition to turtle assemblage characteristics in the Laurentian Great Lakes. Journal of Great Lakes Research, 36(2), 357–365. https://doi.org/10.1016/j.jglr.2010.02.003
doi: 10.1016/j.jglr.2010.02.003
Eagles-Smith, C. A., Ackerman, J. T., Yee, J., & Adelsbach, T. L. (2009). Mercury demethylation in waterbird livers: Dose–response thresholds and differences among species. Environmental Toxicology and Chemistry, 28(3), 568–577. https://doi.org/10.1897/08-245.1
doi: 10.1897/08-245.1
Environment and Climate Change Canada & USEPA. (2021). Great Lakes Binational Strategy for Mercury Risk Management. https://binational.net/wp-content/uploads/2021/06/20210615-Mercury-Strategy-FINAL.pdf
Ernst, C. H., & Lovich, J. E. (2009). Turtles of the United States and Canada. (Second Edition). The John Hopkins University Press.
Evers, D. C., Wiener, J. G., Basu, N., Bodaly, R. A., Morrison, H. A., & Williams, K. A. (2011). Mercury in the Great Lakes region: Bioaccumulation, spatiotemporal patterns, ecological risks, and policy. Ecotoxicology, 20(7), 1487–1499. https://doi.org/10.1007/s10646-011-0784-0
doi: 10.1007/s10646-011-0784-0
Golet, W. J., & Haines, T. A. (2001). Snapping Turtles (Chelydra serpentina) As Monitors for Mercury Contamination of Aquatic Environments. Environmental Monitoring and Assessment, 71(3), 211–220.  https://doi.org/10.1023/A:1011802117198
doi: 10.1023/A:1011802117198
Han, B. (2022). Modulatory effects of divalent mercury and lead on the immune responses of waterfowl upon a viral-like immune challenge [Doctoral dissertation, Wageningen University]. https://doi.org/10.18174/563399
Haskins, D. L., Brown, M. K., Qin, C., Xu, X., Pilgrim, M. A., & Tuberville, T. D. (2021). Multi-decadal trends in mercury and methylmercury concentrations in the brown watersnake (Nerodia taxispilota). Environmental Pollution, 276, 116722. https://doi.org/10.1016/j.envpol.2021.116722
doi: 10.1016/j.envpol.2021.116722
Heaton-Jones, T. G., Homer, B. L., Heaton-Jones, D. L., & Sundlof, S. F. (1997). Mercury Distribution in American Alligators (Alligator mississippiensis ) in Florida. Journal of Zoo and Wildlife Medicine, 28(1, Pharmacology and Toxicology), 62–70.
Hogan, L. S., Marschall, E., Folt, C., & Stein, R. A. (2007). How non-native species in Lake Erie influence trophic transfer of mercury and lead to top predators. Journal of Great Lakes Research, 33(1), 46–61. https://doi.org/10.3394/0380-1330(2007)33[46:HNSILE]2.0.CO;2
doi: 10.3394/0380-1330(2007)33[46:HNSILE]2.0.CO;2
Hopkins, B. C., Hepner, M. J., & Hopkins, W. A. (2013a). Non-destructive techniques for biomonitoring of spatial, temporal, and demographic patterns of mercury bioaccumulation and maternal transfer in turtles. Environmental Pollution, 177, 164–170. https://doi.org/10.1016/j.envpol.2013.02.018
doi: 10.1016/j.envpol.2013.02.018
Hopkins, B. C., Willson, J. D., & Hopkins, W. A. (2013b). Mercury exposure is associated with negative effects on turtle reproduction. Environmental Science and Technology, 47(5), 2416–2422. https://doi.org/10.1021/es304261s
doi: 10.1021/es304261s
Houssein, F. A., O’Reilly, K. E., Peters, B. W., Brueseke, M. A., & Lamberti, G. A. (2021). High-Frequency Photographic Imaging Provides Novel Insights into Nesting Bald Eagle Diet and Opportunities for Public Engagement. American Midland Naturalist, 186(1), 122–135. https://doi.org/10.1674/0003-0031-186.1.122
doi: 10.1674/0003-0031-186.1.122
Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environmental Science & Technology, 47(6), 2441–2456. https://doi.org/10.1021/es304370g
doi: 10.1021/es304370g
Kidd, K. A., Muir, D. C. G., Evans, M. S., Wang, X., Whittle, M., Swanson, H. K., Johnston, T., & Guildford, S. (2012). Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Science of the Total Environment, 438, 135–143. https://doi.org/10.1016/j.scitotenv.2012.08.057
doi: 10.1016/j.scitotenv.2012.08.057
Knight, A. W., & Gibbons, J. W. (1968). Food of the Painted Turtle, Chrysemys picta, in a Polluted River. American Midland Naturalist, 80(2), 558. https://doi.org/10.2307/2423551
doi: 10.2307/2423551
Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., & Campbell, L. M. (2013). Biomagnification of mercury in aquatic food webs: A worldwide meta-analysis. Environmental Science and Technology, 47(23), 13385–13394. https://doi.org/10.1021/es403103t
doi: 10.1021/es403103t
Linder, G., & Grillitsch, B. (2000). Ecotoxicology of Metals. In Sparling, D.W., Linder, G., and Bishop, C.A. (Eds.), Ecotoxicology of amphibians and reptiles (pp. 325–460). Published by Society of Environmental Toxicology and Chemistry.
Louis, V. L. S. T., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Flett, R. J., & Roulet, N. T. (1996). Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environmental Science and Technology, 30(9), 2719–2729. https://doi.org/10.1021/es950856h
doi: 10.1021/es950856h
Mazerolle, M. J. (2020). AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3–1. https://cran.r-project.org/package=AICcmodavg
Meyers-Schöne, L., Shugart, L. R., Walton, B. T., & Beauchamp, J. J. (1993). Comparison of two freshwater turtle species as monitors of radionuclide and chemical contamination: DNA Damage and residue analysis. Environmental Toxicology and Chemistry, 12(8), 1487–1496. https://doi.org/10.1002/etc.5620120816
doi: 10.1002/etc.5620120816
Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The Chemical Cycle and Bioaccumulation of Mercury. Annual Review of Ecology and Systematics, 29(1), 543–566. https://doi.org/10.1146/annurev.ecolsys.29.1.543
doi: 10.1146/annurev.ecolsys.29.1.543
National Research Council. (2000). Toxicological Effects of Methylmercury. UK: The National Academies Press. https://doi.org/10.17226/9899
doi: 10.17226/9899
Newman, M. C., Xu, X., Condon, A., & Liang, L. (2011). Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA). Environmental Pollution, 159(10), 2840–2844. https://doi.org/10.1016/j.envpol.2011.04.045
doi: 10.1016/j.envpol.2011.04.045
Ontario Ministry of the Environment and Climate Change. (2015). Guide to Eating Ontario Fish (28th (revised). Queen’s Printer for Ontario.
Prince, H. H., Padding, P. I., & Knapton, R. W. (1992). Waterfowl Use of the Laurentian Great Lakes. Journal of Great Lakes Research, 18(4), 673–699. https://doi.org/10.1016/S0380-1330(92)71329-X
doi: 10.1016/S0380-1330(92)71329-X
Ross, D. A. N., Guzmán, H. M., Potvin, C., & van Hinsberg, V. J. (2017). A review of toxic metal contamination in marine turtle tissues and its implications for human health. Regional Studies in Marine Science, 15, 1–9. https://doi.org/10.1016/j.rsma.2017.06.003
doi: 10.1016/j.rsma.2017.06.003
Rowe, J. W. (2003). Activity and movements of midland painted turtles (Chrysemys picta marginata) living in a small marsh system on Beaver Island Michigan. Journal of Herpetology, 37(2), 342–353. https://doi.org/10.1670/0022-1511(2003)037[0342:AAMOMP]2.0.CO;2
doi: 10.1670/0022-1511(2003)037[0342:AAMOMP]2.0.CO;2
Sakai, H., Saeki, K., Ichihashi, H., Suganuma, H., Tanabe, S., & Tatsukawa, R. (2000). Species-specific distribution of heavy metals in tissues and organs of loggerhead turtle (Caretta caretta) and green turtle (Chelonia mydas) from Japanese coastal waters. Marine Pollution Bulletin, 40(8), 701–709. https://doi.org/10.1016/S0025-326X(00)00008-4
doi: 10.1016/S0025-326X(00)00008-4
Schlesinger, W. H., & Bernhardt, E. S. (2020). The Global Cycles of Sulfur and Mercury. In Biogeochemistry: An analysis of Global Change (Fourth Edition, pp. 509–526). Academic Press.
Slimani, T., El Hassani, M. S., El Mouden, E. H., Bonnet, M., Bustamante, P., Brischoux, F., Brault-Favrou, M., & Bonnet, X. (2018). Large-scale geographic patterns of mercury contamination in Morocco revealed by freshwater turtles. Environmental Science and Pollution Research, 25(3), 2350–2360. https://doi.org/10.1007/s11356-017-0643-5
doi: 10.1007/s11356-017-0643-5
Smith, D. L., Cooper, M. J., Kosiara, J. M., & Lamberti, G. A. (2016). Body burdens of heavy metals in Lake Michigan wetland turtles. Environmental Monitoring and Assessment, 188(2), 1–14. https://doi.org/10.1007/s10661-016-5118-5
doi: 10.1007/s10661-016-5118-5
Turnquist, M. A., Driscoll, C. T., Schulz, K. L., & Schlaepfer, M. A. (2011). Mercury concentrations in snapping turtles (Chelydra serpentina) correlate with environmental and landscape characteristics. Ecotoxicology, 20(7), 1599–1608. https://doi.org/10.1007/s10646-011-0718-x
doi: 10.1007/s10646-011-0718-x
USEPA. (2001). Water Quality Criterion for the Protection of Human Health: Methylmercury Final (EPA-823-R-01–001; p. 303). https://www.epa.gov/sites/default/files/2020-01/documents/methylmercury-criterion-2001.pdf
Uzarski, D. G., Burton, T. M., Cooper, M. J., Ingram, J. W., & Timmermans, S. T. A. (2005). Fish Habitat Use Within and Across Wetland Classes in Coastal Wetlands of the Five Great Lakes: Development of a Fish-based Index of Biotic Integrity. Journal of Great Lakes Research, 31(SUPPL. 1), 171–187. https://doi.org/10.1016/S0380-1330(05)70297-5
doi: 10.1016/S0380-1330(05)70297-5
Wieten, A. C., Cooper, M. J., Parker, A. D., & Uzarski, D. G. (2012). Great Lakes coastal wetland habitat use by seven turtle species: Influences of wetland type, vegetation, and abiotic conditions. Wetlands Ecology and Management, 20(1), 47–58. https://doi.org/10.1007/s11273-011-9240-4
doi: 10.1007/s11273-011-9240-4
Wu, P., Kainz, M. J., Bravo, A. G., Åkerblom, S., Sonesten, L., & Bishop, K. (2019). The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. Science of the Total Environment, 646, 357–367. https://doi.org/10.1016/j.scitotenv.2018.07.328
doi: 10.1016/j.scitotenv.2018.07.328

Auteurs

Alison M Zachritz (AM)

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA. azachrit@nd.edu.

Katherine E O'Reilly (KE)

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.

Dayna L Smith (DL)

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.

Matthew J Cooper (MJ)

Department of Biology, Grand Valley State University, Allendale, MI, 49101, USA.

Karl M Schlaht (KM)

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.

Gary A Lamberti (GA)

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.

Classifications MeSH