Extraction, separation and purification of fatty acid ethyl esters for biodiesel and DHA from Thraustochytrid biomass.
biodiesel
docosahexaenoic acid
fatty acid ethyl ester
in situ transesterification
oleaginous microbes
Journal
Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833
Informations de publication
Date de publication:
22 Dec 2023
22 Dec 2023
Historique:
revised:
12
12
2023
received:
18
07
2023
accepted:
14
12
2023
medline:
23
12
2023
pubmed:
23
12
2023
entrez:
22
12
2023
Statut:
aheadofprint
Résumé
A novel approach for in situ transesterification, extraction, separation, and purification of fatty acid ethyl esters (FAEE) for biodiesel and docosahexaenoic acid (DHA) from Thraustochytrid biomass has been developed. The downstream processing of Thraustochytrids oil necessitates optimization, considering the higher content of polyunsaturated fatty acids (PUFA). While two-step methods are commonly employed for extracting and transesterifying oil from oleaginous microbes, this may result in oxidation/epoxidation of omega-3 oil due to prolonged exposure to heat and oxygen. To address this issue, a rapid single-step method was devised for in situ transesterification of Thraustochytrid oil. Through further process optimization, a 50% reduction in solvent requirement was achieved without significantly impacting fatty acid recovery or composition. Scale-up studies in a 4 L reactor demonstrated complete FAEE recovery (99.98% of total oil) from biomass, concurrently enhancing DHA yield from 16% to nearly 22%. The decolorization of FAEE oil with fuller's earth effectively removed impurities such as pigments, secondary metabolites, and waxes, resulting in a clear, shiny appearance. High-performance liquid chromatography (HPLC) analysis indicated that the eluted DHA was over 94.5% pure, as corroborated by GC-FID analysis.
Identifiants
pubmed: 38135869
doi: 10.1002/biot.202300350
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2300350Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
Chisti, Y. (2013). Constraints to commercialization of algal fuels. In Journal of Biotechnology, 167(3), 201-214. https://doi.org/10.1016/j.jbiotec.2013.07.020
Chew, K. W., & Show, P. L. (2022). Adapting microalgae-based strategies for sustainable green cities. Biotechnology Journal, 17(10), 2100586. https://doi.org/10.1002/biot.202100586
Singh, D., Mathur, A. S., Tuli, D. K., Puri, M., & Barrow, C. J. (2015). Propyl gallate and butylated hydroxytoluene influence the accumulation of saturated fatty acids, omega-3 fatty acid and carotenoids in thraustochytrids. Journal of Functional Foods, 15, 186-192. https://doi.org/10.1016/j.jff.2015.03.022
Gupta, A., Singh, D., Barrow, C. J., & Puri, M. (2013). Exploring potential use of Australian thraustochytrids for the bioconversion of glycerol to omega-3 and carotenoids production. Biochemical Engineering Journal, 78, 11-17. https://doi.org/10.1016/j.bej.2013.04.028
Chaudhary, S., Chaturvedi, P., Chaudhary, D., & Kumar, R. (2023). Extraction of biofuels and valuable products (essential fatty acids) from microalgae. In A. K. Patel, & A. K. Sharma (Eds.), Sustainable Production Innovations, (pp. 345-366). Wiley. https://doi.org/10.1002/9781119792888.ch12
Ma, W., Li, X., Zhang, F., Zhang, Z.-Y., Yang, W.-Q., Huang, P.-W., Gu, Y., & Sun, X.-M. (2023). Enhancing the biomass and docosahexaenoic acid-rich lipid accumulation of Schizochytrium sp. in propionate wastewater. Biotechnology Journal, 18(8), 2300052. https://doi.org/10.1002/biot.202300052
Hauvermale, A., Kuner, J., Rosenzweig, B., Guerra, D., Diltz, S., & Metz, J. G. (2006). Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 41(8), 739-747. https://doi.org/10.1007/s11745-006-5025-6
Gupta, A., Singh, D., Byreddy, A. R., Thyagarajan, T., Sonkar, S. P., Mathur, A. S., Tuli, D. K., Barrow, C. J., & Puri, M. (2016). Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity. Biotechnol. J., 11(3), 345-355. https://doi.org/10.1002/biot.201500279
Gupta, A., Barrow, C. J., & Puri, M. (2012). Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnology Advances, 30(6), 1733-1745. https://doi.org/10.1016/j.biotechadv.2012.02.014
Wall, R., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2010). Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews, 68(5), 280-289. https://doi.org/10.1111/j.1753-4887.2010.00287.x
Orozco Colonia, B. S., Gilberto Vinícius de Melo, P., & Soccol, C. R. (2020). Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: A review and patent landscape. Trends in Food Science and Technology, 99, 244-256. https://doi.org/10.1016/j.tifs.2020.03.007
Byreddy, A. R., Gupta, A., Barrow, C. J., & Puri, M. (2015). Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Marine Drugs, 13(8), 5111-5127. https://doi.org/10.3390/md13085111
Cooney, M., Young, G., & Nagle, N. (2009). Separation, & purification reviews extraction of bio-oils from microalgae. Separation, & Purification Reveiws, 38(June 2013), 291-325.
Amouri, M., Aziza, M., Kaidi, F., Abert Vian, M., Chemat, F., Amrane, A., Assunção, M. F. G., Santos, L. M. A., Ounnar, A., Zitouni, D., & Berrached, A. (2023). Indigenous microalgae strains characterization for a sustainable biodiesel production. Biotechnology Journal, n/a(n/a), 2300096. https://doi.org/10.1002/biot.202300096
Li, X., Liu, J., Chen, G., Zhang, J., Wang, C., & Liu, B. (2019). Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: A critical review. Algal Res, 43, 101619. https://doi.org/10.1016/j.algal.2019.101619
Burja, A. M., Armenta, R. E., Radianingtyas, H., & Barron, C. J. (2007). Evaluation of fatty acid extraction methods for Thraustochytrium sp.ONC-T18. Journal of Agricultural and Food Chemistry, 55(10), 4795-4801.
Patil, P. D., Dandamudi, K. P. R., Wang, J., Deng, Q., & Deng, S. (2018). Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. Journal of Supercritical Fluids, 135, 60-68. https://doi.org/10.1016/j.supflu.2017.12.019
Tang, Y., Rosenberg, J. N., Betenbaugh, M. J., & Wang, F. (2016). Optimization of one-step in situ transesterification method for accurate quantification of epa in nannochloropsis gaditana. Applied Sciences (Switzerland), 6(11), 343. https://doi.org/10.3390/app6110343
Yusoff, M. F. M., Xu, X., & Guo, Z. (2014). Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: A review on processing and production requirements. JAOCS, Journal of the American Oil Chemists’ Society, 91(4), 525-531. https://doi.org/10.1007/s11746-014-2443-0
Stamenković, O. S., Veličković, A. V., & Veljković, V. B. (2011). The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel, 90(11), 3141-3155. https://doi.org/10.1016/j.fuel.2011.06.049
Ballantyne, C. M. (2023). Clinical lipidology: A Companion to Braunwald's Heart Disease. Clinical lipidology: A companion to Braunwald's Heart Disease, Elsevier. https://doi.org/10.1016/C2019-0-03574-1
Höller, G., Wright, A. D., Matthée, G. F., Konig, G. M., Draeger, S., Aust, H. J., & Schulz, B. (2000). Fungi from marine sponges: Diversity, biological activity and secondary metabolites. Mycological Research, 104(11), 1354-1365. https://doi.org/10.1017/S0953756200003117
Zhuang, B., Ramanauskaite, G., Koa, Z. Y., & Wang, Z. G. (2021). Like dissolves like: A first-principles theory for predicting liquid miscibility and mixture dielectric constant. Science Advances, 7(7). https://doi.org/10.1126/sciadv.abe7275
Selemani, A. (2018). Thermal chemical enhancement and influence of fluid flow in transesterification of palm oil, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(1), 81-87. https://doi.org/10.1080/15567036.2017.1405113
Bikou, E., Louloudi, A., & Papayannakos, N. (1999). The effect of water on the transesterification kinetics of cotton seed oil with ethanol. Chemical Engineering and Technology, 22(1), 70-75. https://doi.org/10.1002/(SICI)1521-4125(199901)22:1<70::AID-CEAT70>3.0.CO;2-0
Ratledge, C., Streekstra, H., Cohen, Z., & Fichtali, J. (2010). Downstream processing, extraction, and purification of single cell oils. Single cell oils: Microbial and algal oils (2nd ed., pp. 179-197). AOCS Press, https://doi.org/10.1016/B978-1-893997-73-8.50013-X
Winwood, R. J. (2013). Recent developments in the commercial production of DHA and EPA rich oils from micro-algae, Crops and Lipids, 20(6), D604. https://doi.org/10.1051/ocl/2013030
Mansour, M. P. (2005). Reversed-phase high-performance liquid chromatography purification of methyl esters of C16-C28 polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)]. Journal of Chromatography A, 1097(1-2), 54-58. https://doi.org/10.1016/j.chroma.2005.08.011
Yamamura, R., & Shimomura, Y. (1997). Industrial high-performance liquid chromatography purification of docosahexaenoic acid ethyl ester and docosapentaenoic acid ethyl ester from single-cell oil. Journal of the American Oil Chemists' Society, 74(11), 1435-1440. https://doi.org/10.1007/s11746-997-0250-6