The Structure of 2,6-Di-
antioxidant
non-covalent interactions
rotational spectroscopy
supersonic jet
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
15 Dec 2023
15 Dec 2023
Historique:
received:
29
10
2023
revised:
27
11
2023
accepted:
12
12
2023
medline:
23
12
2023
pubmed:
23
12
2023
entrez:
23
12
2023
Statut:
epublish
Résumé
The molecular structure of a van der Waals-bonded complex involving 2,6-di-tert-butylphenol and a single argon atom has been determined through rotational spectroscopy. The experimentally derived structural parameters were compared to the outcomes of quantum chemical calculations that can accurately account for dispersive interactions in the cluster. The findings revealed a π-bound configuration for the complex, with the argon atom engaging the aromatic ring. The microwave spectrum reveals both fine and hyperfine tunneling components. The main spectral doubling is evident as two distinct clusters of lines, with an approximate separation of 179 MHz, attributed to the torsional motion associated with the hydroxyl group. Additionally, each component of this doublet further splits into three components, each with separations measuring less than 1 MHz. Investigation into intramolecular dynamics using a one-dimensional flexible model suggests that the main tunneling phenomenon originates from equivalent positions of the hydroxyl group. A double-minimum potential function with a barrier of 1000 (100) cm
Identifiants
pubmed: 38138596
pii: molecules28248111
doi: 10.3390/molecules28248111
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM