A Glove-Wearing Detection Algorithm Based on Improved YOLOv8.
YOLOv8
feature layer
feature pyramid network
glove-wearing detection
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
18 Dec 2023
18 Dec 2023
Historique:
received:
01
11
2023
revised:
05
12
2023
accepted:
11
12
2023
medline:
23
12
2023
pubmed:
23
12
2023
entrez:
23
12
2023
Statut:
epublish
Résumé
Wearing gloves during machinery operation in workshops is essential for preventing accidental injuries, such as mechanical damage and burns. Ensuring that workers are wearing gloves is a key strategy for accident prevention. Consequently, this study proposes a glove detection algorithm called YOLOv8-AFPN-M-C2f based on YOLOv8, offering swifter detection speeds, lower computational demands, and enhanced accuracy for workshop scenarios. This research innovates by substituting the head of YOLOv8 with the AFPN-M-C2f network, amplifying the pathways for feature vector propagation, and mitigating semantic discrepancies between non-adjacent feature layers. Additionally, the introduction of a superficial feature layer enriches surface feature information, augmenting the model's sensitivity to smaller objects. To assess the performance of the YOLOv8-AFPN-M-C2f model, this study conducted multiple experiments using a factory glove detection dataset compiled for this study. The results indicate that the enhanced YOLOv8 model surpasses other network models. Compared to the baseline YOLOv8 model, the refined version shows a 2.6% increase in mAP@50%, a 63.8% rise in FPS, and a 13% reduction in the number of parameters. This research contributes an effective solution for the detection of glove adherence.
Identifiants
pubmed: 38139751
pii: s23249906
doi: 10.3390/s23249906
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM