7 T characterization of excitatory and inhibitory systems of acute pain in healthy female participants.


Journal

NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233

Informations de publication

Date de publication:
Apr 2024
Historique:
revised: 20 11 2023
received: 22 06 2023
accepted: 21 11 2023
medline: 18 3 2024
pubmed: 23 12 2023
entrez: 23 12 2023
Statut: ppublish

Résumé

Current understanding of the physiological underpinnings of normative pain processing is incomplete. Enhanced knowledge of these systems is necessary to advance our understanding of pain processes as well as to develop effective therapeutic interventions. Previous neuroimaging research suggests a network of interrelated brain regions that seem to be implicated in the processing and experience of pain. Among these, the dorsal anterior cingulate cortex (dACC) plays an important role in the affective aspects of pain signals. The current study leveraged functional MRS to investigate the underlying dynamic shifts in the neurometabolic signature of the human dACC at rest and during acute pain. Results provide support for increased glutamate levels following acute pain administration. Specifically, a 4.6% increase in glutamate was observed during moderate pressure pain compared with baseline. Exploratory analysis also revealed meaningful changes in dACC gamma aminobutyric acid in response to pain stimulation. These data contribute toward the characterization of neurometabolic shifts, which lend insight into the role of the dACC in the pain network. Further research in this area with larger sample sizes could contribute to the development of novel therapeutics or other advances in pain-related outcomes.

Identifiants

pubmed: 38140895
doi: 10.1002/nbm.5088
doi:

Substances chimiques

Glutamic Acid 3KX376GY7L

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e5088

Informations de copyright

© 2023 John Wiley & Sons, Ltd.

Références

Diatchenko L, Nackley AG, Tchivileva IE, Shabalina SA, Maixner W. Genetic architecture of human pain perception. Trends Genet. 2007;23(12):605-613. doi:10.1016/j.tig.2007.09.004
Mano H, Seymour B. Pain: a distributed brain information network? PLoS Biol. 2015;13(1):e1002037. doi:10.1371/journal.pbio.1002037
Penfield W, Jasper H. Epilepsy and the Functional Anatomy of the Human Brain. Little, Brown; 1954. doi:10.1097/00007611-195407000-00024
Coghill RC, Sang CN, Maisog JM, Iadarola MJ. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol. 1999;82(4):1934-1943. doi:10.1152/jn.1999.82.4.1934
Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO. Pain-related neurons in the human cingulate cortex. Nat Neurosci. 1999;2(5):403-405. doi:10.1038/8065
Jones AKP, Brown WD, Friston KJ, Qi LY, Frackowiak RSJ. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B. 1991;244(1309):39-44. doi:10.1098/rspb.1991.0048
Vierck CJ, Whitsel BL, Favorov OV, Brown AW, Tommerdahl M. Role of primary somatosensory cortex in the coding of pain. Pain. 2013;154(3):334-344. doi:10.1016/j.pain.2012.10.021
Bliss TVP, Collingridge GL, Kaang BK, Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci. 2016;17(8):485-496. doi:10.1038/nrn.2016.68
Navratilova E, Xie JY, Meske D, et al. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci. 2015;35(18):7264-7271. doi:10.1523/JNEUROSCI.3862-14.2015
Navratilova E, Atcherley C, Porreca F. Brain circuits encoding reward from pain relief. Trends Neurosci. 2015;38(11):741-750. doi:10.1016/j.tins.2015.09.003
Navratilova E, Porreca F. Reward and motivation in pain and pain relief. Nat Neurosci. 2014;17(10):1304-1312. doi:10.1038/nn.3811
Cottam WJ, Condon L, Alshuft H, Reckziegel D, Auer DP. Associations of limbic-affective brain activity and severity of ongoing chronic arthritis pain are explained by trait anxiety. Neuroimage Clin. 2016;12:269-276. doi:10.1016/j.nicl.2016.06.022
Bushnell MC, Čeko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14(7):502-511. doi:10.1038/nrn3516
Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage. 2012;60(1):505-522. doi:10.1016/j.neuroimage.2011.11.095
Yanes J. 7 T Functional MRS/MRI Assessment of Pain in Cannabis Users. Dissertation. Auburn University. December 1, 2020. Accessed April 17, 2023. https://etd.auburn.edu//handle/10415/7539
Heilbronner SR, Hayden BY. Dorsal anterior cingulate cortex: a bottom-up view. Annu Rev Neurosci. 2016;39(1):149-170. doi:10.1146/annurev-neuro-070815-013952
Eisenberger NI. Meta-analytic evidence for the role of the anterior cingulate cortex in social pain. Soc Cogn Affect Neurosci. 2015;10(1):1-2. doi:10.1093/scan/nsu120
Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci. 2011;12(3):154-167. doi:10.1038/nrn2994
Koush Y, Rothman DL, Behar KL, de Graaf RA, Hyder F. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab. 2022;42(6):911-934. doi:10.1177/0271678X221076570
Duarte JMN, Lei H, Mlynárik V, Gruetter R. The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage. 2012;61(2):342-362. doi:10.1016/j.neuroimage.2011.12.038
Reid MA, Forloines MR, Salibi N. Reproducibility of 7-T brain spectroscopy using an ultrashort echo time STimulated Echo Acquisition Mode sequence and automated voxel repositioning. NMR Biomed. 2022;35(2):e4631. doi:10.1002/nbm.4631
Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130(4):1007S-1015S. doi:10.1093/jn/130.4.1007S
de Graaf RA. In Vivo NMR Spectroscopy: Principles and Techniques. Wiley; 2019. doi:10.1002/9781119382461
Archibald J, MacMillan EL, Enzler A, Jutzeler CR, Schweinhardt P, Kramer JLK. Excitatory and inhibitory responses in the brain to experimental pain: a systematic review of MR spectroscopy studies. Neuroimage. 2020;215:116794. doi:10.1016/j.neuroimage.2020.116794
Mullins PG, Rowland LM, Jung RE, Sibbitt WL. A novel technique to study the brain's response to pain: proton magnetic resonance spectroscopy. Neuroimage. 2005;26(2):642-646. doi:10.1016/j.neuroimage.2005.02.001
Jelen LA, Lythgoe DJ, Jackson JB, Howard MA, Stone JM, Egerton A. Imaging brain Glx dynamics in response to pressure pain stimulation: a 1H-fMRS study. Front Psych. 2021;12:681419. doi:10.3389/fpsyt.2021.681419
Cleve M, Gussew A, Reichenbach JR. In vivo detection of acute pain-induced changes of GABA+ and Glx in the human brain by using functional 1H MEGA-PRESS MR spectroscopy. Neuroimage. 2015;105:67-75. doi:10.1016/j.neuroimage.2014.10.042
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:1-47. doi:10.1016/S0074-7696(02)13011-7
Wijtenburg SA, Rowland LM, Edden RAE, Barker PB. Reproducibility of brain spectroscopy at 7T using conventional localization and spectral editing techniques. J Magn Reson Imaging. 2013;38(2):460-467. doi:10.1002/jmri.23997
Mullins PG, McGonigle DJ, O'Gorman RL, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage. 2014;86:43-52. doi:10.1016/j.neuroimage.2012.12.004
de Matos NMP, Hock A, Wyss M, Ettlin DA, Brügger M. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex. Neuroimage. 2017;162:162-172. doi:10.1016/j.neuroimage.2017.08.078
Kupers R, Danielsen ER, Kehlet H, Christensen R, Thomsen C. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man. Pain. 2009;142(1):89-93. doi:10.1016/j.pain.2008.12.008
Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092-1097. doi:10.1001/archinte.166.10.1092
Kroenke K, Spitzer RL, Williams JBW. The PHQ-9. J Gen Intern Med. 2001;16(9):606-613. doi:10.1046/j.1525-1497.2001.016009606.x
Loewy RL, Pearson R, Vinogradov S, Bearden CE, Cannon TD. Psychosis risk screening with the Prodromal Questionnaire-brief version (PQ-B). Schizophr Res. 2011;129(1):42-46. doi:10.1016/j.schres.2011.03.029
Doyle SR, Donovan DM. A validation study of the Alcohol Dependence Scale. J Stud Alcohol Drugs. 2009;70(5):689-699. doi:10.15288/jsad.2009.70.689
Nonnemaker J, Mowery P, Hersey J, et al. Measurement properties of a nicotine dependence scale for adolescents. Nicotine Tob Res. 2004;6(2):295-301. doi:10.1080/14622200410001676413
Gossop M, Darke S, Griffiths P, et al. The Severity of Dependence Scale (SDS): psychometric properties of the SDS in English and Australian samples of heroin, cocaine and amphetamine users. Addiction. 1995;90(5):607-614. doi:10.1046/j.1360-0443.1995.9056072.x
Von Korff M, Ormel J, Keefe FJ, Dworkin SF. Grading the severity of chronic pain. Pain. 1992;50(2):133-149. doi:10.1016/0304-3959(92)90154-4
Galer BS, Jensen MP. Development and preliminary validation of a pain measure specific to neuropathic pain: the Neuropathic Pain Scale. Neurology. 1997;48(2):332-338. doi:10.1212/wnl.48.2.332
Riley JL, Robinson ME, Wise EA, Myers CD, Fillingim RB. Sex differences in the perception of noxious experimental stimuli: a meta-analysis. Pain. 1998;74(2/3):181-187. doi:10.1016/s0304-3959(97)00199-1
Bartley EJ, Fillingim RB. Sex differences in pain: a brief review of clinical and experimental findings. Br J Anaesth. 2013;111(1):52-58. doi:10.1093/bja/aet127
Fillingim RB, Maixner W. Gender differences in the responses to noxious stimuli. Pain Forum. 1995;4(4):209-221. doi:10.1016/S1082-3174(11)80022-X
Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL. Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain. 2009;10(5):447-485. doi:10.1016/j.jpain.2008.12.001
Riley JL, Robinson ME, Wise EA, Price D. A meta-analytic review of pain perception across the menstrual cycle. Pain. 1999;81(3):225-235. doi:10.1016/S0304-3959(98)00258-9
Reed BG, Carr BR. The normal menstrual cycle and the control of ovulation. In: Feingold KR, Anawalt B, Boyce A, et al., eds. Endotext. MDText.com; 2000. http://www.ncbi.nlm.nih.gov/books/NBK279054/
Ellis BW, Johns MW, Lancaster R, Raptopoulos P, Angelopoulos N, Priest RG. The St. Mary's Hospital Sleep Questionnaire: a study of reliability. Sleep. 1981;4(1):93-97. doi:10.1093/sleep/4.1.93
Chee MW, Chuah LY. Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition. Curr Opin Neurol. 2008;21(4):417-423. doi:10.1097/WCO.0b013e3283052cf7
Ma N, Dinges DF, Basner M, Rao H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep. 2015;38(2):233-240. doi:10.5665/sleep.4404
Davis MT, Daniel TA, Witte TK, et al. Demonstration and validation of a new pressure-based MRI-safe pain tolerance device. J Neurosci Methods. 2016;271:160-168. doi:10.1016/j.jneumeth.2016.07.001
Gruetter R, Tkáč I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med. 2000;43(2):319-323. doi:10.1002/(SICI)1522-2594(200002)43:2%3C319::AID-MRM22%3E3.0.CO;2-1
Tkáć I, Gruetter R. Methodology of 1H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson. 2005;29(1):139-157. doi:10.1007/BF03166960
Near J, Edden R, Evans CJ, Paquin R, Harris A, Jezzard P. Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain. Magn Reson Med. 2015;73(1):44-50. doi:10.1002/mrm.25094
Edden RAE, Puts NAJ, Harris AD, Barker PB, Evans CJ. Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J Magn Reson Imaging. 2014;40(6):1445-1452. doi:10.1002/jmri.24478
Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14(4):260-264. doi:10.1002/nbm.698
Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672-679. doi:10.1002/mrm.1910300604
Simpson R, Devenyi GA, Jezzard P, Hennessy TJ, Near J. Advanced processing and simulation of MRS data using the FID appliance (FID-A)-an open source, MATLAB-based toolkit. Magn Reson Med. 2017;77(1):23-33. doi:10.1002/mrm.26091
Öz G, Deelchand DK, Wijnen JP, et al. Advanced single voxel 1H magnetic resonance spectroscopy techniques in humans: experts' consensus recommendations. NMR Biomed. 2021;34(5):e4236. doi:10.1002/nbm.4236
Near J, Harris AD, Juchem C, et al. Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts' consensus recommendations. NMR Biomed. 2021;34(5):e4257. doi:10.1002/nbm.4257
Mullins PG. Towards a theory of functional magnetic resonance spectroscopy (fMRS): a meta-analysis and discussion of using MRS to measure changes in neurotransmitters in real time. Scand J Psychol. 2018;59(1):91-103. doi:10.1111/sjop.12411
Archibald J, MacMillan EL, Graf C, Kozlowski P, Laule C, Kramer JLK. Metabolite activity in the anterior cingulate cortex during a painful stimulus using functional MRS. Sci Rep. 2020;10(1):19218. doi:10.1038/s41598-020-76263-3
Ford TC, Crewther DP. A comprehensive review of the 1H-MRS metabolite spectrum in autism spectrum disorder. Front Mol Neurosci. 2016;9:14. doi:10.3389/fnmol.2016.00014
Dougherty PM, Palecek J, Paleckova V, Sorkin LS, Willis WD. The role of NMDA and non-NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli. J Neurosci. 1992;12(8):3025-3041. doi:10.1523/JNEUROSCI.12-08-03025.1992
Bleakman D, Alt A, Nisenbaum ES. Glutamate receptors and pain. Semin Cell Dev Biol. 2006;17(5):592-604. doi:10.1016/j.semcdb.2006.10.008
Pereira V, Goudet C. Emerging trends in pain modulation by metabotropic glutamate receptors. Front Mol Neurosci. 2019;11:464. doi:10.3389/fnmol.2018.00464
Mazzitelli M, Palazzo E, Maione S, Neugebauer V. Group II metabotropic glutamate receptors: role in pain mechanisms and pain modulation. Front Mol Neurosci. 2018;11:383. doi:10.3389/fnmol.2018.00383
Chiechio S, Nicoletti F. Metabotropic glutamate receptors and the control of chronic pain. Curr Opin Pharmacol. 2012;12(1):28-34. doi:10.1016/j.coph.2011.10.010
Huang J, Chang JY, Woodward DJ, et al. Dynamic neuronal responses in cortical and thalamic areas during different phases of formalin test in rats. Exp Neurol. 2006;200(1):124-134. doi:10.1016/j.expneurol.2006.01.036
Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215-222. doi:10.1016/S1364-6613(00)01483-2
Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118(1):279-306. doi:10.1093/brain/118.1.279
Wiech K, Tracey I. The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage. 2009;47(3):987-994. doi:10.1016/j.neuroimage.2009.05.059
Xiao X, Zhang YQ. A new perspective on the anterior cingulate cortex and affective pain. Neurosci Biobehav Rev. 2018;90:200-211. doi:10.1016/j.neubiorev.2018.03.022
Taylor R, Neufeld RWJ, Schaefer B, et al. Functional magnetic resonance spectroscopy of glutamate in schizophrenia and major depressive disorder: anterior cingulate activity during a color-word Stroop task. NPJ Schizophr. 2015;1(1):1-8. doi:10.1038/npjschz.2015.28
Kühn S, Schubert F, Mekle R, et al. Neurotransmitter changes during interference task in anterior cingulate cortex: evidence from fMRI-guided functional MRS at 3 T. Brain Struct Funct. 2016;221(5):2541-2551. doi:10.1007/s00429-015-1057-0
Jelen LA, King S, Horne CM, Lythgoe DJ, Young AH, Stone JM. Functional magnetic resonance spectroscopy in patients with schizophrenia and bipolar affective disorder: glutamate dynamics in the anterior cingulate cortex during a working memory task. Eur Neuropsychopharmacol. 2019;29(2):222-234. doi:10.1016/j.euroneuro.2018.12.005
Burns E, Chipchase L, Schabrun SM. Primary sensory and motor cortex function in response to acute muscle pain: a systematic review and meta-analysis. Eur J Pain. 2016;20(8):1203-1213. doi:10.1002/ejp.859
Nash PG, Macefield VG, Klineberg IJ, Gustin SM, Murray GM, Henderson LA. Changes in human primary motor cortex activity during acute cutaneous and muscle orofacial pain. J Orofac Pain. 2010;24(4):379-390.
Nash PG, Macefield VG, Klineberg IJ, Gustin SM, Murray GM, Henderson LA. Bilateral activation of the trigeminothalamic tract by acute orofacial cutaneous and muscle pain in humans. Pain. 2010;151(2):384-393. doi:10.1016/j.pain.2010.07.027
Niddam DM, Yeh TC, Wu YT, et al. Event-related functional MRI study on central representation of acute muscle pain induced by electrical stimulation. Neuroimage. 2002;17(3):1437-1450. doi:10.1006/nimg.2002.1270
Henderson LA, Bandler R, Gandevia SC, Macefield VG. Distinct forebrain activity patterns during deep versus superficial pain. Pain. 2006;120(3):286-296. doi:10.1016/j.pain.2005.11.003
Macefield VG, Gandevia S, Henderson LA. Discrete changes in cortical activation during experimentally induced referred muscle pain: a single-trial fMRI study. Cereb Cortex. 2007;17(9):2050-2059. doi:10.1093/cercor/bhl113
Takahashi K, Taguchi T, Tanaka S, et al. Painful muscle stimulation preferentially activates emotion-related brain regions compared to painful skin stimulation. Neurosci Res. 2011;70(3):285-293. doi:10.1016/j.neures.2011.04.001
Loggia ML, Edwards RR, Kim J, et al. Disentangling linear and nonlinear brain responses to evoked deep tissue pain. Pain. 2012;153(10):2140-2151. doi:10.1016/j.pain.2012.07.014
Ip IB, Emir UE, Parker AJ, Campbell J, Bridge H. Comparison of neurochemical and BOLD signal contrast response functions in the human visual cortex. J Neurosci. 2019;39(40):7968-7975. doi:10.1523/JNEUROSCI.3021-18.2019
Kiemes A, Davies C, Kempton MJ, et al. GABA, glutamate and neural activity: a systematic review with meta-analysis of multimodal 1H-MRS-fMRI studies. Front Psych. 2021;12:644315. doi:10.3389/fpsyt.2021.644315
Moon HS, Jiang H, Vo TT, Jung WB, Vazquez AL, Kim SG. Contribution of excitatory and inhibitory neuronal activity to BOLD fMRI. Cereb Cortex. 2021;31(9):4053-4067. doi:10.1093/cercor/bhab068
Pfeuffer J, Tkác I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson. 1999;141(1):104-120. doi:10.1006/jmre.1999.1895
Penner J, Bartha R. Semi-LASER 1H MR spectroscopy at 7 Tesla in human brain: metabolite quantification incorporating subject-specific macromolecule removal. Magn Reson Med. 2015;74(1):4-12. doi:10.1002/mrm.25380
Cudalbu C, Behar KL, Bhattacharyya PK, et al. Contribution of macromolecules to brain 1H MR spectra: experts' consensus recommendations. NMR Biomed. 2021;34(5):e4393. doi:10.1002/nbm.4393
Prinsen H, de Graaf RA, Mason GF, Pelletier D, Juchem C. Reproducibility measurement of glutathione, GABA, and glutamate: towards in vivo neurochemical profiling of multiple sclerosis with MR spectroscopy at 7 Tesla. J Magn Reson Imaging. 2017;45(1):187-198. doi:10.1002/jmri.25356

Auteurs

Steven J Nichols (SJ)

Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA.

Julio A Yanes (JA)

Exponent Inc., Washington, District of Columbia, USA.

Meredith A Reid (MA)

Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA.

Jennifer L Robinson (JL)

Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH