Simplified capture, extraction, and amplification of cellular DNA from water samples.
Cells
DNA amplification
DNA extraction
Filtration
Water samples
Journal
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
ISSN: 1348-2246
Titre abrégé: Anal Sci
Pays: Switzerland
ID NLM: 8511078
Informations de publication
Date de publication:
23 Dec 2023
23 Dec 2023
Historique:
received:
28
10
2023
accepted:
27
11
2023
medline:
24
12
2023
pubmed:
24
12
2023
entrez:
23
12
2023
Statut:
aheadofprint
Résumé
DNA analysis in water samples is attracting attention in various fields. However, conventional methods for DNA analysis require a work-intensive and time-consuming sample pre-treatment. In this study, a simplified pre-treatment method for analyzing DNA in water samples was evaluated. The process consists of filtration, DNA extraction, and amplification, which can be achieved within a short time. In the filtration process, two types of filters, firstly a tissue paper (Kimwipe) and then a glass filter (GF/F), were used in sequence. The first large pore size filter enabled a reduction in filtration time by removing large particulate matter impurities present in river water matrix. Cells spiked into 1 L of river water were recovered at more than 90% within approximately 5 min filtration time. Also, DNA was extracted from the captured cells directly on the surface of the filter in only 5 min. Thus, DNA collection and extraction from a water sample can be completed within about 10 min. Furthermore, PCR amplification was performed directly from DNA-attached filter sections, which greatly reduced the number of required pre-treatment steps. Finally, we succeeded in establishing a simple and fast on-site pre-treatment system by using a hand-driven syringe filtration method. This pre-treatment system is expected to offer the possibility for the future establishment of a rapid and easy DNA analysis method applicable to various types of water samples.
Identifiants
pubmed: 38142247
doi: 10.1007/s44211-023-00482-7
pii: 10.1007/s44211-023-00482-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry.
Références
A. Martellini, P. Payment, R. Villemur, Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res. 39, 541–548 (2005). https://doi.org/10.1016/j.watres.2004.11.012
doi: 10.1016/j.watres.2004.11.012
pubmed: 15707626
C.M. Merkes, S.G. McCalla, N.R. Jensen, M.P. Gaikowski, J.J. Amberg, Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS ONE 9, e113346 (2014). https://doi.org/10.1371/journal.pone.0113346
doi: 10.1371/journal.pone.0113346
pubmed: 25402206
pmcid: 4234652
K.M. Ruppert, R.J. Kline, M.S. Rahman, Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019). https://doi.org/10.1016/j.gecco.2019.e00547
doi: 10.1016/j.gecco.2019.e00547
H.C. Rees, B.C. Maddison, D.J. Middleditch, J.R.M. Patmore, K.C. Gough, Review: the detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014). https://doi.org/10.1111/1365-2664.12306
doi: 10.1111/1365-2664.12306
P.F. Thomsen, E. Willerslev, Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015). https://doi.org/10.1016/j.biocon.2014.11.019
doi: 10.1016/j.biocon.2014.11.019
N. Daan, The IBTS database: a plea for quality control. (2001)
P.F. Thomsen, J. Kielgast, L.L. Iversen, P.R. Møller, M. Rasmussen, E. Willerslev, Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, e41732 (2012). https://doi.org/10.1371/journal.pone.0041732
doi: 10.1371/journal.pone.0041732
pubmed: 22952584
pmcid: 3430657
A.D. Foote, P.F. Thomsen, S. Sveegaard, M. Wahlberg, J. Kielgast, L.A. Kyhn, A.B. Salling, A. Galatius, L. Orlando, M.T.P. Gilbert, Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE 7, e41781 (2012). https://doi.org/10.1371/journal.pone.0041781
doi: 10.1371/journal.pone.0041781
pubmed: 22952587
pmcid: 3430683
P.F. Thomsen, J. Kielgast, L.L. Iversen, C. Wiuf, M. Rasmussen, M.T.P. Gilbert, L. Orlando, E. Willerslev, Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012). https://doi.org/10.1111/j.1365-294X.2011.05418.x
doi: 10.1111/j.1365-294X.2011.05418.x
pubmed: 22151771
C.S. Goldberg, A. Sepulveda, A. Ray, J. Baumgardt, L.P. Waits, Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw. Sci. 32, 792–800 (2013). https://doi.org/10.1899/13-046.1
doi: 10.1899/13-046.1
A.J. Piaggio, R.M. Engeman, M.W. Hopken, J.S. Humphrey, K.L. Keacher, W.E. Bruce, M.L. Avery, Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Mol. Ecol. Resour. 14, 374–380 (2014). https://doi.org/10.1111/1755-0998.12180
doi: 10.1111/1755-0998.12180
pubmed: 24119154
T. Dejean, A. Valentini, C. Miquel, P. Taberlet, E. Bellemain, C. Miaud, Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012). https://doi.org/10.1111/j.1365-2664.2012.02171.x
doi: 10.1111/j.1365-2664.2012.02171.x
S. Creer, K. Deiner, S. Frey, D. Porazinska, P. Taberlet, W.K. Thomas, C. Potter, H.M. Bik, The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7, 1008–1018 (2016). https://doi.org/10.1111/2041-210X.12574
doi: 10.1111/2041-210X.12574
D. Garlapati, B. Charankumar, K. Ramu, P. Madeswaran, M.V. Ramana Murthy, A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 18, 389–411 (2019). https://doi.org/10.1007/s11157-019-09501-4
doi: 10.1007/s11157-019-09501-4
C.R. Turner, M.A. Barnes, C.C.Y. Xu, S.E. Jones, C.L. Jerde, D.M. Lodge, Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol. Evol. 5, 676–684 (2014). https://doi.org/10.1111/2041-210X.12206
doi: 10.1111/2041-210X.12206
B.P. Olds, C.L. Jerde, M.A. Renshaw, Y. Li, N.T. Evans, C.R. Turner, K. Deiner, A.R. Mahon, M.A. Brueseke, P.D. Shirey, M.E. Pfrender, D.M. Lodge, G.A. Lamberti, Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016). https://doi.org/10.1002/ece3.2186
doi: 10.1002/ece3.2186
pubmed: 27516876
pmcid: 4972244
M.A. Barnes, C.R. Turner, The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016). https://doi.org/10.1007/s10592-015-0775-4
doi: 10.1007/s10592-015-0775-4
C.S. Goldberg, C.R. Turner, K. Deiner, K.E. Klymus, P.F. Thomsen, M.A. Murphy, S.F. Spear, A. McKee, S.J. Oyler-McCance, R.S. Cornman, M.B. Laramie, A.R. Mahon, R.F. Lance, D.S. Pilliod, K.M. Strickler, L.P. Waits, A.K. Fremier, T. Takahara, J.E. Herder, P. Taberlet, Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016). https://doi.org/10.1111/2041-210X.12595
doi: 10.1111/2041-210X.12595
S. Yamamoto, K. Minami, K. Fukaya, K. Takahashi, H. Sawada, H. Murakami, S. Tsuji, H. Hashizume, S. Kubonaga, T. Horiuchi, M. Hongo, J. Nishida, Y. Okugawa, A. Fujiwara, M. Fukuda, S. Hidaka, K.W. Suzuki, M. Miya, H. Araki, H. Yamanaka, A. Maruyama, K. Miyashita, R. Masuda, T. Minamoto, M. Kondoh, Environmental DNA as a ‘snapshot’ of fish distribution: a case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan. PLoS ONE 11, e0149786 (2016). https://doi.org/10.1371/journal.pone.0149786
doi: 10.1371/journal.pone.0149786
pubmed: 26933889
pmcid: 4775019
H. Yamanaka, H. Motozawa, S. Tsuji, R.C. Miyazawa, T. Takahara, T. Minamoto, On-site filtration of water samples for environmental DNA analysis to avoid DNA degradation during transportation. Ecol. Res. 31, 963–967 (2016). https://doi.org/10.1007/s11284-016-1400-9
doi: 10.1007/s11284-016-1400-9
The eDNA Society, Environmental DNA sampling and experiment manual. https://ednasociety.org/en/manuals/ . Accessed 2023-10-09
S.R. Jangam, D.H. Yamada, S.M. McFall, D.M. Kelso, Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J. Clin. Microbiol. 47, 2363–2368 (2009). https://doi.org/10.1128/jcm.r00092-09
doi: 10.1128/jcm.r00092-09
pubmed: 19644129
pmcid: 2725643
G. Cananzi, I. Gregori, F. Martino, T. Li, E. Boscari, E. Camatti, L. Congiu, I.A.M. Marino, M. Pansera, A. Schroeder, L. Zane, Environmental DNA metabarcoding reveals spatial and seasonal patterns in the fish community in the Venice Lagoon. Front. Mar. Sci. (2022). https://doi.org/10.3389/fmars.2022.1009490
doi: 10.3389/fmars.2022.1009490
M.M. AlShahni, K. Makimura, T. Yamada, K. Satoh, Y. Ishihara, K. Takatori, T. Sawada, Direct colony PCR of several medically important fungi using Ampdirect
doi: 10.7883/yoken.JJID.2009.164
pubmed: 19305063
H. Doi, R. Inui, Y. Akamatsu, K. Kanno, H. Yamanaka, T. Takahara, T. Minamoto, Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017). https://doi.org/10.1111/fwb.12846
doi: 10.1111/fwb.12846
Biomere, Inc., The Biomere Platform. https://biomeme.com/ . Accessed 2023-10-09
H. Doi, T. Watanabe, N. Nishizawa, T. Saito, H. Nagata, Y. Kameda, N. Maki, K. Ikeda, T. Fukuzawa, On-site environmental DNA detection of species using ultrarapid mobile PCR. Mol. Ecol. Resour. 21, 2364–2368 (2021). https://doi.org/10.1111/1755-0998.13448
doi: 10.1111/1755-0998.13448
pubmed: 34139102
H. Aoki, H. Tao, Label- and marker-free gene detection based on hybridization-induced conformational flexibility changes in a ferrocene–PNA conjugate probe. Analyst 132, 784–791 (2007). https://doi.org/10.1039/B704214K
doi: 10.1039/B704214K
pubmed: 17646878
H. Aoki, M. Torimura, T. Nakazato, 384-channel electrochemical sensor array chips based on hybridization-triggered switching for simultaneous oligonucleotide detection. Biosens. Bioelectron. 136, 76–83 (2019). https://doi.org/10.1016/j.bios.2019.04.047
doi: 10.1016/j.bios.2019.04.047
pubmed: 31039490
H. Aoki, T. Sukegawa, M. Torimura, T. Nakazato, Nonlabeling and nonexternal indicator DNA sensing based on ferrocene-terminated probes immobilized on gold film electrode arrays with plasma and acid treatments. Sens. Mater. 32, 1079–1090 (2020). https://doi.org/10.18494/Sam.2020.2640
doi: 10.18494/Sam.2020.2640