Systematic analysis of Mendelian disease-associated gene variants reveals new classes of cancer-predisposing genes.

Cancer genomics Cancer predisposition gene Mendelian disease-associated gene Pathogenic variant

Journal

Genome medicine
ISSN: 1756-994X
Titre abrégé: Genome Med
Pays: England
ID NLM: 101475844

Informations de publication

Date de publication:
25 Dec 2023
Historique:
received: 12 07 2023
accepted: 30 10 2023
medline: 25 12 2023
pubmed: 25 12 2023
entrez: 24 12 2023
Statut: epublish

Résumé

Despite the acceleration of somatic driver gene discovery facilitated by recent large-scale tumor sequencing data, the contribution of inherited variants remains largely unexplored, primarily focusing on previously known cancer predisposition genes (CPGs) due to the low statistical power associated with detecting rare pathogenic variant-phenotype associations. Here, we introduce a generalized log-regression model to measure the excess of pathogenic variants within genes in cancer patients compared to control samples. It aims to measure gene-level cancer risk enrichment by collapsing rare pathogenic variants after controlling the population differences across samples. In this study, we investigate whether pathogenic variants in Mendelian disease-associated genes (OMIM genes) are enriched in cancer patients compared to controls. Utilizing data from PCAWG and the 1,000 Genomes Project, we identify 103 OMIM genes demonstrating significant enrichment of pathogenic variants in cancer samples (FDR 20%). Through an integrative approach considering three distinct properties, we classify these CPG-like OMIM genes into four clusters, indicating potential diverse mechanisms underlying tumor progression. Further, we explore the function of PAH (a key metabolic enzyme associated with Phenylketonuria), the gene exhibiting the highest prevalence of pathogenic variants in a pan-cancer (1.8%) compared to controls (0.6%). Our findings suggest a possible cancer progression mechanism through metabolic profile alterations. Overall, our data indicates that pathogenic OMIM gene variants contribute to cancer progression and introduces new CPG classifications potentially underpinning diverse tumorigenesis mechanisms.

Sections du résumé

BACKGROUND BACKGROUND
Despite the acceleration of somatic driver gene discovery facilitated by recent large-scale tumor sequencing data, the contribution of inherited variants remains largely unexplored, primarily focusing on previously known cancer predisposition genes (CPGs) due to the low statistical power associated with detecting rare pathogenic variant-phenotype associations.
METHODS METHODS
Here, we introduce a generalized log-regression model to measure the excess of pathogenic variants within genes in cancer patients compared to control samples. It aims to measure gene-level cancer risk enrichment by collapsing rare pathogenic variants after controlling the population differences across samples.
RESULTS RESULTS
In this study, we investigate whether pathogenic variants in Mendelian disease-associated genes (OMIM genes) are enriched in cancer patients compared to controls. Utilizing data from PCAWG and the 1,000 Genomes Project, we identify 103 OMIM genes demonstrating significant enrichment of pathogenic variants in cancer samples (FDR 20%). Through an integrative approach considering three distinct properties, we classify these CPG-like OMIM genes into four clusters, indicating potential diverse mechanisms underlying tumor progression. Further, we explore the function of PAH (a key metabolic enzyme associated with Phenylketonuria), the gene exhibiting the highest prevalence of pathogenic variants in a pan-cancer (1.8%) compared to controls (0.6%).
CONCLUSIONS CONCLUSIONS
Our findings suggest a possible cancer progression mechanism through metabolic profile alterations. Overall, our data indicates that pathogenic OMIM gene variants contribute to cancer progression and introduces new CPG classifications potentially underpinning diverse tumorigenesis mechanisms.

Identifiants

pubmed: 38143269
doi: 10.1186/s13073-023-01252-w
pii: 10.1186/s13073-023-01252-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

107

Subventions

Organisme : Agencia Estatal de Investigación
ID : PID2019-109571RA-I00
Organisme : Korea Health Industry Development Institute
ID : HI18C1876
Pays : Republic of Korea
Organisme : National Research Foundation of Korea
ID : 2021R1A2C3005360
Organisme : College of Medicine, Seoul National University
ID : 1120190020
Organisme : Seoul National University Hospital
ID : 03-2020-0380

Informations de copyright

© 2023. The Author(s).

Références

Broca P. Traité des tumeurs. 1 and 2. Paris: Asselin; p. 866–1869.
Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68(4):820–3.
pubmed: 5279523 pmcid: 389051 doi: 10.1073/pnas.68.4.820
Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1(2):157–62.
pubmed: 11905807 doi: 10.1038/35101031
Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302–8.
pubmed: 24429628 pmcid: 4975511 doi: 10.1038/nature12981
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Chatrath A, Ratan A, Dutta A. Germline Variants That Affect Tumor Progression. Trends Genet. 2021;37(5):433–43.
pubmed: 33203571 doi: 10.1016/j.tig.2020.10.005
Srinivasan P, et al. The context-specific role of germline pathogenicity in tumorigenesis. Nat Genet. 2021;53(11):1577–85.
pubmed: 34741162 pmcid: 8957388 doi: 10.1038/s41588-021-00949-1
Hamosh A, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005; 33(suppl_1): p. D514-D517.
Futreal PA, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4(3):177–83.
pubmed: 14993899 pmcid: 2665285 doi: 10.1038/nrc1299
Milenkovic I, Blumenreich S, Futerman AH. GBA mutations, glucosylceramide and Parkinson’s disease. Curr Opin Neurobiol. 2021;72:148–54.
pubmed: 34883387 doi: 10.1016/j.conb.2021.11.004
Liu J, et al. Gaucher disease gene GBA functions in immune regulation. Proc Natl Acad Sci U S A. 2012;109(25):10018–23.
pubmed: 22665763 pmcid: 3382552 doi: 10.1073/pnas.1200941109
Campbell PJ, et al. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.
doi: 10.1038/s41586-020-1969-6
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England). 2011;27(21):2987–93.
pubmed: 21903627
Auton A, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
pubmed: 26432245 doi: 10.1038/nature15393
Scheinin I, et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 2014;24(12):2022–32.
pubmed: 25236618 pmcid: 4248318 doi: 10.1101/gr.175141.114
Amemiya HM, Kundaje A, Boyle AP. The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci Rep. 2019;9(1):9354.
pubmed: 31249361 pmcid: 6597582 doi: 10.1038/s41598-019-45839-z
Derrien T, et al. Fast Computation and Applications of Genome Mappability. PLoS ONE. 2012;7(1): e30377.
pubmed: 22276185 pmcid: 3261895 doi: 10.1371/journal.pone.0030377
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164–e164.
pubmed: 20601685 pmcid: 2938201 doi: 10.1093/nar/gkq603
Landrum MJ, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014; 42(Database issue): p. D980-D985.
Karczewski KJ, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.
pubmed: 32461654 pmcid: 7334197 doi: 10.1038/s41586-020-2308-7
McLaren W, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122.
pubmed: 27268795 pmcid: 4893825 doi: 10.1186/s13059-016-0974-4
Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Huang KL, et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell. 2018;173(2):355-370.e14.
pubmed: 29625052 pmcid: 5949147 doi: 10.1016/j.cell.2018.03.039
Zhang J, et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N Engl J Med. 2015;373(24):2336–46.
pubmed: 26580448 pmcid: 4734119 doi: 10.1056/NEJMoa1508054
Martínez-Jiménez F, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20(10):555–72.
pubmed: 32778778 doi: 10.1038/s41568-020-0290-x
Lawrence MS, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.
pubmed: 24390350 pmcid: 4048962 doi: 10.1038/nature12912
Dietlein F, et al. Identification of cancer driver genes based on nucleotide context. Nat Genet. 2020;52(2):208–18.
pubmed: 32015527 pmcid: 7031046 doi: 10.1038/s41588-019-0572-y
Sondka Z, et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696–705.
pubmed: 30293088 pmcid: 6450507 doi: 10.1038/s41568-018-0060-1
Sherman BT, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–21.
pubmed: 35325185 doi: 10.1093/nar/gkac194
Li Y, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578(7793):112–21.
pubmed: 32025012 pmcid: 7025897 doi: 10.1038/s41586-019-1913-9
Goldman MJ, et al. A user guide for the online exploration and visualization of PCAWG data. Nat Commun. 2020;11(1):3400.
pubmed: 32636365 pmcid: 7340791 doi: 10.1038/s41467-020-16785-6
Dentro SC, et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell. 2021;184(8):2239-2254.e39.
pubmed: 33831375 pmcid: 8054914 doi: 10.1016/j.cell.2021.03.009
Palmer D, et al. Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues. Aging (Albany NY). 2021;13(3):3313–41.
pubmed: 33611312 doi: 10.18632/aging.202648
Lonsdale J, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580–5.
doi: 10.1038/ng.2653
Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. R. Package Version. 2017;1:337–54.
Grossman RL, et al. Toward a Shared Vision for Cancer Genomic Data. N Engl J Med. 2016;375(12):1109–12.
pubmed: 27653561 pmcid: 6309165 doi: 10.1056/NEJMp1607591
Sugimoto M, et al. Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Curr Bioinform. 2012;7(1):96–108.
pubmed: 22438836 pmcid: 3299976 doi: 10.2174/157489312799304431
Pang Z, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021; 49(W1): W388-W396.
Ryu JY, Kim HU, Lee SY. Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proc Natl Acad Sci. 2017;114(45):E9740–9.
pubmed: 29078384 pmcid: 5692585 doi: 10.1073/pnas.1713050114
Gu C, et al. Current status and applications of genome-scale metabolic models. Genome Biol. 2019;20(1):121.
pubmed: 31196170 pmcid: 6567666 doi: 10.1186/s13059-019-1730-3
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29(1):15–21.
pubmed: 23104886 pmcid: 3530905 doi: 10.1093/bioinformatics/bts635
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
pubmed: 21816040 pmcid: 3163565 doi: 10.1186/1471-2105-12-323
Subramanian A, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Song H, et al. Transcriptional analysis of immune modulatory genes in melanoma treated with PD-1 blockade. bioRxiv. 2020:2020.12.20.397000.  https://doi.org/10.1101/2020.12.20.397000 .
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discovery. 2019;18(3):197–218.
pubmed: 30610226 doi: 10.1038/s41573-018-0007-y
Poplin R, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018:201178.  https://doi.org/10.1101/201178 .
Jang HJ, et al. Development of Hepatocellular Carcinoma in Patients with Glycogen Storage Disease: a Single Center Retrospective Study. J Korean Med Sci. 2020;35(1): e5.
pubmed: 31898434 doi: 10.3346/jkms.2020.35.e5
Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl). 2016;94(2):137–54.
pubmed: 26882899 doi: 10.1007/s00109-015-1377-9
Fang C-B, et al. Fanconi anemia pathway: mechanisms of breast cancer predisposition development and potential therapeutic targets. Front Cell Dev Biol. 2020;8:160. https://doi.org/10.3389/fcell.2020.00160 .
doi: 10.3389/fcell.2020.00160 pubmed: 32300589 pmcid: 7142266
Levy-Lahad E. Fanconi anemia and breast cancer susceptibility meet again. Nat Genet. 2010;42(5):368–9.
pubmed: 20428093 doi: 10.1038/ng0510-368
Ashburner M, et al. Gene ontology: tool for the unification of biology. Gene Ontol Consortium Nat Genet. 2000;25(1):25–9.
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Ryland GL, et al. Loss of heterozygosity: what is it good for? BMC Med Genomics. 2015;8:45.
pubmed: 26231170 pmcid: 4522148 doi: 10.1186/s12920-015-0123-z
Aguet F, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13.
doi: 10.1038/nature24277
Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;376(9750):1417–27.
pubmed: 20971365 doi: 10.1016/S0140-6736(10)60961-0
Fisman D. Cystic fibrosis heterozygosity: Carrier state or haploinsufficiency? Proc Natl Acad Sci U S A. 2020;117(6):2740–2.
pubmed: 31992636 pmcid: 7022141 doi: 10.1073/pnas.1921730117
Wright CF, et al. Assessing the Pathogenicity, Penetrance, and Expressivity of Putative Disease-Causing Variants in a Population Setting. Am J Hum Genet. 2019;104(2):275–86.
pubmed: 30665703 pmcid: 6369448 doi: 10.1016/j.ajhg.2018.12.015
Park S, Supek F, Lehner B. Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits. Nat Commun. 2018;9(1):2601.
pubmed: 29973584 pmcid: 6031629 doi: 10.1038/s41467-018-04900-7
Huang KL, et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell. 2018; 173(2): 355–370 e14.
Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol. 2010;184(8):4062–8.
pubmed: 20368286 doi: 10.4049/jimmunol.0903002
McGettrick AF, O’Neill LA. How metabolism generates signals during innate immunity and inflammation. J Biol Chem. 2013;288(32):22893–8.
pubmed: 23798679 pmcid: 3743468 doi: 10.1074/jbc.R113.486464
Burton BK, et al. Prevalence of comorbid conditions among adult patients diagnosed with phenylketonuria. Mol Genet Metab. 2018;125(3):228–34.
pubmed: 30266197 doi: 10.1016/j.ymgme.2018.09.006
Arbesman J, et al. Melanoma cases demonstrate increased carrier frequency of phenylketonuria/hyperphenylalanemia mutations. Pigment Cell Melanoma Res. 2018;31(4):529–33.
pubmed: 29473999 pmcid: 6013363 doi: 10.1111/pcmr.12695
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46.
pubmed: 35022204 doi: 10.1158/2159-8290.CD-21-1059
Frederickson RM. A New Era of Innovation for CAR T-cell Therapy. Mol Ther. 2015;23(12):1795–6.
pubmed: 26689117 pmcid: 4700119 doi: 10.1038/mt.2015.205
Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23(1):27–47.
pubmed: 26771115 pmcid: 4715268 doi: 10.1016/j.cmet.2015.12.006
Martinez-Outschoorn UE, et al. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(1):11–31.
pubmed: 27141887 doi: 10.1038/nrclinonc.2016.60
Sayaman RW, et al. Germline genetic contribution to the immune landscape of cancer. Immunity. 2021;54(2):367-386.e8.
pubmed: 33567262 pmcid: 8414660 doi: 10.1016/j.immuni.2021.01.011
Penkert J, et al. Plasma metabolome signature indicative of BRCA1 germline status independent of cancer incidence. Front Oncol. 2021:11:627217. https://doi.org/10.3389/fonc.2021.627217 .
Song S. Analysis scripts for "Systematic analysis of Mendelian disease-associated gene variants reveals new classes of cancer-predisposing genes". GitHub; 2023. https://github.com/SolipParkLab/OMIM_CPG .
Song S. Metabolic data for "Systematic analysis of Mendelian disease-associated gene variants reveals new classes of cancer-predisposing genes". Zenodo; 2023. https://zenodo.org/records/6791873 .

Auteurs

Seulki Song (S)

Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
Structural Biology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Calle de Melchor Fernández Almagro, 3, Madrid, 28029, Spain.

Youngil Koh (Y)

Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
Biomedical Research Institute and Departments of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.

Seokhyeon Kim (S)

Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.

Sang Mi Lee (SM)

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

Hyun Uk Kim (HU)

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

Jung Min Ko (JM)

Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.

Se-Hoon Lee (SH)

Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.

Sung-Soo Yoon (SS)

Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
Biomedical Research Institute and Departments of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.

Solip Park (S)

Structural Biology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Calle de Melchor Fernández Almagro, 3, Madrid, 28029, Spain. solippark@cnio.es.

Classifications MeSH