COL3A1 is a potential diagnostic biomarker for synovial chondromatosis and affects the cell cycle and migration of chondrocytes.

COL3A1 Chondrocytes migration Diagnostic biomarker Synovial chondromatosis

Journal

International immunopharmacology
ISSN: 1878-1705
Titre abrégé: Int Immunopharmacol
Pays: Netherlands
ID NLM: 100965259

Informations de publication

Date de publication:
24 Dec 2023
Historique:
received: 20 07 2023
revised: 02 12 2023
accepted: 17 12 2023
medline: 25 12 2023
pubmed: 25 12 2023
entrez: 25 12 2023
Statut: aheadofprint

Résumé

Synovial chondromatosis (SC) primarily affects the major joints and is characterized by the formation of benign cartilaginous nodules. In the present study, we evaluated the differences in the histology and gene expression of SC and normal cartilages and further elucidated the function of hub genes in SC. Histological staining and biochemical analysis were performed to measure collagen and glycosaminoglycan (GAG) contents in SC and normal cartilage samples. Then, microarray analysis was performed using knee joint samples (three normal and three SC samples) to identify the differentially expressed genes (DEGs). Subsequently, bioinformatics analysis was performed to identify the hub genes and explore the mechanisms underlying SC. The intersection of the top 10 upregulated DEGs, top 10 downregulated DEGs, and hub genes was validated in SC tissues. Lastly, in vitro experiments and our clinical cohort were used to determine the potential biological functions and diagnostic value, respectively, of the most significant gene. The GAG and collagen contents were comparable to or higher in SC tissues than in normal tissues. Microarray analysis revealed 143 upregulated and 107 downregulated DEGs in SC. Furthermore, functional enrichment analysis revealed an association between immunity and metabolism-related pathways and SC development. Among 20 hub genes, two intersection genes, namely, collagen type III alpha 1 chain (COL3A1) and HSPA8, were notably expressed in SC tissues, with COL3A1 exhibiting a more significant difference in mRNA expression. Furthermore, COL3A1 can promote chondrocyte migration and cell cycle progression. Additionally, clinical data revealed COL3A1 can be a diagnostic marker for primary SC (AUC = 0.82) and be a positive correlation with neutrophil-to-lymphocyte ratio. These results suggest that SC tissues contained the abundant GAG and collagen. COL3A1 can affect the function of chondrocytes and be a diagnostic marker of primary SC patients. These findings provide a novel approach and a fundamental contribution for diagnosis and treatment in SC.

Sections du résumé

BACKGROUND BACKGROUND
Synovial chondromatosis (SC) primarily affects the major joints and is characterized by the formation of benign cartilaginous nodules. In the present study, we evaluated the differences in the histology and gene expression of SC and normal cartilages and further elucidated the function of hub genes in SC.
METHODS METHODS
Histological staining and biochemical analysis were performed to measure collagen and glycosaminoglycan (GAG) contents in SC and normal cartilage samples. Then, microarray analysis was performed using knee joint samples (three normal and three SC samples) to identify the differentially expressed genes (DEGs). Subsequently, bioinformatics analysis was performed to identify the hub genes and explore the mechanisms underlying SC. The intersection of the top 10 upregulated DEGs, top 10 downregulated DEGs, and hub genes was validated in SC tissues. Lastly, in vitro experiments and our clinical cohort were used to determine the potential biological functions and diagnostic value, respectively, of the most significant gene.
RESULTS RESULTS
The GAG and collagen contents were comparable to or higher in SC tissues than in normal tissues. Microarray analysis revealed 143 upregulated and 107 downregulated DEGs in SC. Furthermore, functional enrichment analysis revealed an association between immunity and metabolism-related pathways and SC development. Among 20 hub genes, two intersection genes, namely, collagen type III alpha 1 chain (COL3A1) and HSPA8, were notably expressed in SC tissues, with COL3A1 exhibiting a more significant difference in mRNA expression. Furthermore, COL3A1 can promote chondrocyte migration and cell cycle progression. Additionally, clinical data revealed COL3A1 can be a diagnostic marker for primary SC (AUC = 0.82) and be a positive correlation with neutrophil-to-lymphocyte ratio.
CONCLUSIONS CONCLUSIONS
These results suggest that SC tissues contained the abundant GAG and collagen. COL3A1 can affect the function of chondrocytes and be a diagnostic marker of primary SC patients. These findings provide a novel approach and a fundamental contribution for diagnosis and treatment in SC.

Identifiants

pubmed: 38145599
pii: S1567-5769(23)01743-5
doi: 10.1016/j.intimp.2023.111416
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

111416

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Wen-Kang Chen (WK)

Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 53000, China; The First Affiliated Hospital, Speciality of Sports Medcine in Department of Orthopaedics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Han-Jing Zhang (HJ)

Department of Hepatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 ChuanShan Road, Shigu District, Hengyang, 421001, Hunan, China.

Jianghua Liu (J)

The First Affiliated Hospital, Speciality of Sports Medcine in Department of Orthopaedics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Zhu Dai (Z)

The First Affiliated Hospital, Speciality of Sports Medcine in Department of Orthopaedics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China. Electronic address: oliverdai@hotmail.com.

Xin-Li Zhan (XL)

Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 53000, China. Electronic address: zhanxinli@stu.gxmu.edu.cn.

Classifications MeSH