Techniques for investigating lncRNA transcript functions in neurodevelopment.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
25 Dec 2023
Historique:
received: 18 07 2023
accepted: 12 12 2023
revised: 05 12 2023
medline: 26 12 2023
pubmed: 26 12 2023
entrez: 25 12 2023
Statut: aheadofprint

Résumé

Long noncoding RNAs (lncRNAs) are sequences of 200 nucleotides or more that are transcribed from a large portion of the mammalian genome. While hypothesized to have a variety of biological roles, many lncRNAs remain largely functionally uncharacterized due to unique challenges associated with their investigation. For example, some lncRNAs overlap with other genomic loci, are expressed in a cell-type-specific manner, and/or are differentially processed at the post-transcriptional level. The mammalian CNS contains a vast diversity of lncRNAs, and lncRNAs are highly abundant in the mammalian brain. However, interrogating lncRNA function in models of the CNS, particularly in vivo, can be complex and challenging. Here we review the breadth of methods used to investigate lncRNAs in the CNS, their merits, and the understanding they can provide with respect to neurodevelopment and pathophysiology. We discuss remaining challenges in the field and provide recommendations to assay lncRNAs based on current methods.

Identifiants

pubmed: 38145986
doi: 10.1038/s41380-023-02377-5
pii: 10.1038/s41380-023-02377-5
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
ID : 2021SGR01309

Informations de copyright

© 2023. The Author(s).

Références

Lander S, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.
pubmed: 11237011 doi: 10.1038/35057062
ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004;306:636–40.
doi: 10.1126/science.1105136
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.
pubmed: 22955620 pmcid: 3684276 doi: 10.1038/nature11233
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
doi: 10.1038/nature11247
Derrien T, Guigó R, Johnson R. The long non-coding RNAs: A new (P)layer in the “Dark Matter. Front Genet. 2012;2:107.
pubmed: 22303401 pmcid: 3266617 doi: 10.3389/fgene.2011.00107
Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, et al. GENCODE 2021. Nucleic Acids Res. 2021;49:D916–D923.
pubmed: 33270111 doi: 10.1093/nar/gkaa1087
Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 2018;19:535–48.
pubmed: 29795125 pmcid: 6451964 doi: 10.1038/s41576-018-0017-y
Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H, et al. NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 2018;46:D308–D314.
pubmed: 29140524 doi: 10.1093/nar/gkx1107
Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21:542–51.
pubmed: 31048766 doi: 10.1038/s41556-019-0311-8
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.
pubmed: 22955828 pmcid: 3771521 doi: 10.1126/science.1222794
Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13:528–41.
pubmed: 22814587 pmcid: 3478095 doi: 10.1038/nrn3234
Liu S, Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res. 2016;5:F1000 Faculty Rev–182.
pubmed: 26962443 doi: 10.12688/f1000research.7223.1
Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015;88:861–77.
pubmed: 26637795 doi: 10.1016/j.neuron.2015.09.045
Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443:167–72.
pubmed: 16915236 doi: 10.1038/nature05113
Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 2006;16:11–9.
pubmed: 16344565 pmcid: 1356124 doi: 10.1101/gr.4200206
Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA. 2008;105:716–21.
pubmed: 18184812 pmcid: 2206602 doi: 10.1073/pnas.0706729105
Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31:522–33.
pubmed: 22193719 doi: 10.1038/emboj.2011.459
Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29:3082–93.
pubmed: 20729808 pmcid: 2944070 doi: 10.1038/emboj.2010.199
Pavlaki I, Alammari F, Sun B, Clark N, Sirey T, Lee S, et al. The long non-coding RNA Paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. EMBO J. 2018;37:e98219.
pubmed: 29661885 pmcid: 5978383 doi: 10.15252/embj.201798219
Mattick JS. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays. 2003;25:930–9.
pubmed: 14505360 doi: 10.1002/bies.10332
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.
pubmed: 33353982 doi: 10.1038/s41580-020-00315-9
Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339–46.
pubmed: 22337053 pmcid: 4197003 doi: 10.1038/nature10887
Hacisuleyman E, Shukla CJ, Weiner CL, Rinn JL. Function and evolution of local repeats in the Firre locus. Nat Commun. 2016;7:11021.
pubmed: 27009974 pmcid: 4820808 doi: 10.1038/ncomms11021
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol. 2020;55:662–90.
pubmed: 33043695 doi: 10.1080/10409238.2020.1828259
Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: Emerging therapeutic opportunities. Mol Ther. 2023;31:1550–61.
pubmed: 36793211 doi: 10.1016/j.ymthe.2023.02.008
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21.
pubmed: 24296535 doi: 10.1038/nrg3606
Montalbano A, Canver MC, Sanjana NE. High-throughput approaches to pinpoint function within the noncoding genome. Mol Cell. 2017;68:44–59.
pubmed: 28985510 pmcid: 5701515 doi: 10.1016/j.molcel.2017.09.017
Andergassen D, Rinn JL. From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nat Rev Genet. 2022;23:229–43.
pubmed: 34837040 doi: 10.1038/s41576-021-00427-8
Kleaveland B, Shi CY, Stefano J, Bartel DP. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell. 2018;174:350–362.e17.
pubmed: 29887379 pmcid: 6559361 doi: 10.1016/j.cell.2018.05.022
Kim JS. Genome editing comes of age. Nat Protoc. 2016;11:1573–8.
pubmed: 27490630 doi: 10.1038/nprot.2016.104
Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405.
pubmed: 23664777 pmcid: 3694601 doi: 10.1016/j.tibtech.2013.04.004
Heidenreich M, Zhang F. Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci. 2016;17:36–44.
pubmed: 26656253 doi: 10.1038/nrn.2015.2
Lander ES. The heroes of CRISPR. Cell. 2016;164:18–28.
pubmed: 26771483 doi: 10.1016/j.cell.2015.12.041
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13:722–36.
pubmed: 26411297 pmcid: 5426118 doi: 10.1038/nrmicro3569
Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods Mol Biol. 2015;1239:197–217.
pubmed: 25408407 doi: 10.1007/978-1-4939-1862-1_10
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78.
pubmed: 28605718 pmcid: 5776717 doi: 10.1016/j.mib.2017.05.008
Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361:866–9.
pubmed: 30166482 pmcid: 6455913 doi: 10.1126/science.aat5011
Janga H, Aznaourova M, Boldt F, Damm K, Grünweller A, Schulte LN. Cas9-mediated excision of proximal DNaseI/H3K4me3 signatures confers robust silencing of microRNA and long non-coding RNA genes. PLoS One. 2018;13:e0193066.
pubmed: 29451908 pmcid: 5815609 doi: 10.1371/journal.pone.0193066
Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015;16:299–311.
pubmed: 25854182 pmcid: 4503232 doi: 10.1038/nrg3899
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
pubmed: 24157548 pmcid: 3969860 doi: 10.1038/nprot.2013.143
Nishiyama J. Genome editing in the mammalian brain using the CRISPR-Cas system. Neurosci Res. 2019;141:4–12.
pubmed: 30076877 doi: 10.1016/j.neures.2018.07.003
Hanna RE, Doench JG. Design and analysis of CRISPR-Cas experiments. Nat Biotechnol. 2020;38:813–23.
pubmed: 32284587 doi: 10.1038/s41587-020-0490-7
Han J, Zhang J, Chen L, Shen B, Zhou J, Hu B, et al. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol. 2014;11:829–35.
pubmed: 25137067 pmcid: 4179957 doi: 10.4161/rna.29624
Bergstrand S, O’Brien EM, Coucoravas C, Hrossova D, Peirasmaki D, Schmidli S, et al. Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK. Nat Commun. 2022;13:1015.
pubmed: 35197472 pmcid: 8866460 doi: 10.1038/s41467-022-28646-5
Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749.
pubmed: 24381249 pmcid: 3874104 doi: 10.7554/eLife.01749
Allou L, Balzano S, Magg A, Quinodoz M, Royer-Bertrand B, Schöpflin R, et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature. 2021;592:93–98.
pubmed: 33568816
Faheem M, Deneault E, Alexandrova R, Rodrigues DC, Pellecchia G, Shum C, et al. Disruption of DDX53 coding sequence has limited impact on iPSC-derived human NGN2 neurons. BMC Med Genomics. 2023;16:5.
pubmed: 36635662 pmcid: 9837974 doi: 10.1186/s12920-022-01425-3
Jacobs EZ, Warrier S, Volders PJ, D’haene E, Van Lombergen E, Vantomme L, et al. CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells. Sci Rep. 2017;7:16650.
pubmed: 29192200 pmcid: 5709416 doi: 10.1038/s41598-017-16932-y
Ma M, Xiong W, Hu F, Deng MF, Huang X, Chen JG, et al. A novel pathway regulates social hierarchy via lncRNA AtLAS and postsynaptic synapsin IIb. Cell Res. 2020;30:105–18.
pubmed: 31959917 pmcid: 7015055 doi: 10.1038/s41422-020-0273-1
Labonté B, Abdallah K, Maussion G, Yerko V, Yang J, Bittar T, et al. Regulation of impulsive and aggressive behaviours by a novel lncRNA. Mol Psychiatry. 2021;26:3751–64.
pubmed: 31907380 doi: 10.1038/s41380-019-0637-4
Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol. 2015;33:102–6.
pubmed: 25326897 doi: 10.1038/nbt.3055
Hana S, Peterson M, McLaughlin H, Marshall E, Fabian AJ, McKissick O, et al. Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene Ther. 2021;28:646–58.
pubmed: 33558692 pmcid: 8599009 doi: 10.1038/s41434-021-00224-2
Straub C, Granger AJ, Saulnier JL, Sabatini BL. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS One. 2014;9:e105584.
pubmed: 25140704 pmcid: 4139396 doi: 10.1371/journal.pone.0105584
Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22:524–8.
pubmed: 30858603 doi: 10.1038/s41593-019-0352-0
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507.
pubmed: 31147612 pmcid: 7079207 doi: 10.1038/s41580-019-0131-5
Wolter JM, Mao H, Fragola G, Simon JM, Krantz JL, Bazick HO, et al. Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Nature. 2020;587:281–4.
pubmed: 33087932 pmcid: 8020672 doi: 10.1038/s41586-020-2835-2
Shechner DM, Hacisuleyman E, Younger ST, Rinn JL. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. 2015;12:664–70.
pubmed: 26030444 pmcid: 4821475 doi: 10.1038/nmeth.3433
Cheng TL, Qiu Z. Long non-coding RNA tagging and expression manipulation via CRISPR/Cas9-mediated targeted insertion. Protein Cell. 2018;9:820–5.
pubmed: 28875452 doi: 10.1007/s13238-017-0464-9
Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet. 2020;21:102–17.
pubmed: 31729473 doi: 10.1038/s41576-019-0184-5
Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science. 2012;338:1469–72.
pubmed: 23239737 doi: 10.1126/science.1228110
Beerli RR, Dreier B, Barbas CF 3rd. Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci USA. 2000;97:1495–500.
pubmed: 10660690 pmcid: 26462 doi: 10.1073/pnas.040552697
Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA, Guilak F, et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods. 2013;10:239–42.
pubmed: 23377379 pmcid: 3719416 doi: 10.1038/nmeth.2361
Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD, et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. 2013;10:243–5.
pubmed: 23396285 pmcid: 3584229 doi: 10.1038/nmeth.2366
Mercer AC, Gaj T, Sirk SJ, Lamb BM, Barbas CF 3rd. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth Biol. 2014;3:723–30.
pubmed: 24251925 doi: 10.1021/sb400114p
Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23:1163–71.
pubmed: 23979020 pmcid: 3790238 doi: 10.1038/cr.2013.122
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8.
pubmed: 25494202 doi: 10.1038/nature14136
Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12:326–8.
pubmed: 25730490 pmcid: 4393883 doi: 10.1038/nmeth.3312
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159:635–46.
pubmed: 25307933 pmcid: 4252608 doi: 10.1016/j.cell.2014.09.039
Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci. 2018;21:440–6.
pubmed: 29335603 doi: 10.1038/s41593-017-0060-6
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic modulation of stem cells in neurodevelopment: the role of methylation and acetylation. Front Cell Neurosci. 2017;11:23.
pubmed: 28223921 pmcid: 5293809 doi: 10.3389/fncel.2017.00023
Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106:11667–72.
pubmed: 19571010 pmcid: 2704857 doi: 10.1073/pnas.0904715106
Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.
pubmed: 20616235 pmcid: 2967777 doi: 10.1126/science.1192002
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.
pubmed: 20393566 pmcid: 3049919 doi: 10.1038/nature08975
West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55:791–802.
pubmed: 25155612 pmcid: 4428586 doi: 10.1016/j.molcel.2014.07.012
An H, Williams NG, Shelkovnikova TA. NEAT1 and paraspeckles in neurodegenerative diseases: A missing lnc found? Noncoding RNA Res. 2018;3:243–52.
pubmed: 30533572 pmcid: 6257911 doi: 10.1016/j.ncrna.2018.11.003
Pereira Fernandes D, Bitar M, Jacobs FMJ, Barry G. Long non-coding RNAs in neuronal aging. Noncoding RNA. 2018;4:12.
pubmed: 29670042 pmcid: 6027360
Butler AA, Johnston DR, Kaur S, Lubin FD. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci Signal. 2019;12:eaaw9277.
pubmed: 31266852 pmcid: 7219525 doi: 10.1126/scisignal.aaw9277
Soubeyrand S, Lau P, Peters V, McPherson R. Off-target effects of CRISPRa on interleukin-6 expression. PLoS One. 2019;14:e0224113. Oct 28
pubmed: 31658298 pmcid: 6816553 doi: 10.1371/journal.pone.0224113
Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res. 2017;45:e12.
pubmed: 28180319
Chen W, Zhang G, Li J, Zhang X, Huang S, Xiang S, et al. CRISPRlnc: a manually curated database of validated sgRNAs for lncRNAs. Nucleic Acids Res. 2019;47:D63–D68.
pubmed: 30285246 doi: 10.1093/nar/gky904
Wang XW, Hu LF, Hao J, Liao LQ, Chiu YT, Shi M, et al. A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol. 2019;21:522–30.
pubmed: 30804503 doi: 10.1038/s41556-019-0292-7
Zhao YT, Wang Y. Monitoring the promoter activity of long noncoding RNAs and stem cell differentiation through knock-in of sgRNA flanked by tRNA in an intron. Cell Discov. 2021;7:45.
pubmed: 34127653 pmcid: 8203696 doi: 10.1038/s41421-021-00272-3
Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature. 2017;548:343–6.
pubmed: 28792927 pmcid: 5706657 doi: 10.1038/nature23451
Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell. 2018;23:758–771.e8.
pubmed: 30318302 pmcid: 6214761 doi: 10.1016/j.stem.2018.09.003
Zhang L, Wang H. Long non-coding RNA in CNS injuries: a new target for therapeutic intervention. Mol Ther Nucleic Acids. 2019;17:754–66.
pubmed: 31437654 pmcid: 6709344 doi: 10.1016/j.omtn.2019.07.013
Engreitz J, Abudayyeh O, Gootenberg J, Zhang F. CRISPR tools for systematic studies of RNA regulation. Cold Spring Harb Perspect Biol. 2019;11:a035386.
pubmed: 31371352 pmcid: 6671937 doi: 10.1101/cshperspect.a035386
Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
pubmed: 30846871 doi: 10.1038/s41573-019-0017-4
Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021;20:427–53.
pubmed: 33762737 doi: 10.1038/s41573-021-00162-z
Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46:1584–1600.
pubmed: 29240946 doi: 10.1093/nar/gkx1239
Liang XH, Sun H, Nichols JG, Crooke ST. RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther. 2017;25:2075–92.
pubmed: 28663102 pmcid: 5589097 doi: 10.1016/j.ymthe.2017.06.002
Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM. Functional complexity and regulation through RNA dynamics. Nature. 2012;482:322–30.
pubmed: 22337051 pmcid: 3320162 doi: 10.1038/nature10885
Boudreau RL, Davidson BL. RNAi therapeutics for CNS disorders. Brain Res. 2010;1338:112–21.
pubmed: 20307511 doi: 10.1016/j.brainres.2010.03.038
Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14:9–21.
pubmed: 29192260 doi: 10.1038/nrneurol.2017.148
Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409–12.
pubmed: 25470045 doi: 10.1038/nature13975
Lin B, Lu L, Wang Y, Zhang Q, Wang Z, Cheng G, et al. Nanomedicine directs neuronal differentiation of neural stem cells via silencing long noncoding RNA for stroke therapy. Nano Lett. 2021;21:806–15.
pubmed: 33395306 doi: 10.1021/acs.nanolett.0c04560
Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res. 2011;21:1944–54.
pubmed: 21844124 pmcid: 3205578 doi: 10.1101/gr.122358.111
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov. 2021;20:629–51.
pubmed: 34145432 pmcid: 8212082 doi: 10.1038/s41573-021-00219-z
Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev. 2007;107:3715–43.
pubmed: 17715981 doi: 10.1021/cr0306743
Cerchia L, de Franciscis V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 2010;28:517–25.
pubmed: 20719399 doi: 10.1016/j.tibtech.2010.07.005
Lakhin AV, Tarantul VZ, Gening LV. Aptamers: problems, solutions and prospects. Acta Nat. 2013;5:34–43.
doi: 10.32607/20758251-2013-5-4-34-43
Wang YL, Chang LC, Chen KB, Wang SC. Aptamer-guided targeting of the intracellular long-noncoding RNA HOTAIR. Am J Cancer Res. 2021;11:945–54.
pubmed: 33791165 pmcid: 7994153
Zaiki Y, Wong TW. Targeting genetic tool for long non-coding RNA of cancer stem cells with aptamer-guided nanocarriers. Expert Opin Drug Deliv. 2021;18:1791–3.
pubmed: 34605336 doi: 10.1080/17425247.2021.1989408
Tran BT, Kim J, Ahn DR. Systemic delivery of aptamer-drug conjugates for cancer therapy using enzymatically generated self-assembled DNA nanoparticles. Nanoscale. 2020;12:22945–51.
pubmed: 33188383 doi: 10.1039/D0NR05652A
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109:E2579–86.
pubmed: 22949671 pmcid: 3465414 doi: 10.1073/pnas.1208507109
O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. 2014;516:263–6.
pubmed: 25274302 pmcid: 4268322 doi: 10.1038/nature13769
Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA. RNA-dependent RNA targeting by CRISPR-Cas9. Elife. 2018;7:e32724.
pubmed: 29303478 pmcid: 5796797 doi: 10.7554/eLife.32724
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol Cell. 2015;60:385–97.
pubmed: 26593719 pmcid: 4660269 doi: 10.1016/j.molcel.2015.10.008
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550:280–4.
pubmed: 28976959 pmcid: 5706658 doi: 10.1038/nature24049
Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, et al. Glia-to-Neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell. 2020;181:590–603.e16.
pubmed: 32272060 doi: 10.1016/j.cell.2020.03.024
Li J, Shen Z, Liu Y, Yan Z, Liu Y, Lin X, et al. A high-fidelity RNA-targeting Cas13 restores paternal Ube3a expression and improves motor functions in Angelman syndrome mice. Mol Ther. 2023;31:2286–95.
pubmed: 36805082 doi: 10.1016/j.ymthe.2023.02.015
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27.
pubmed: 29070703 pmcid: 5793859 doi: 10.1126/science.aaq0180
Yablonovitch AL, Deng P, Jacobson D, Li JB. The evolution and adaptation of A-to-I RNA editing. PLoS Genet. 2017;13:e1007064.
pubmed: 29182635 pmcid: 5705066 doi: 10.1371/journal.pgen.1007064
Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci. 2020;21:36–51.
pubmed: 31804615 doi: 10.1038/s41583-019-0244-z
Migeon BR, Kazi E, Haisley-Royster C, Hu J, Reeves R, Call L, et al. Human X inactivation center induces random X chromosome inactivation in male transgenic mice. Genomics. 1999;59:113–21.
pubmed: 10409422 doi: 10.1006/geno.1999.5861
Ramos AD, Andersen RE, Liu SJ, Nowakowski TJ, Hong SJ, Gertz C, et al. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015;16:439–47.
pubmed: 25800779 pmcid: 4388801 doi: 10.1016/j.stem.2015.02.007
Andersen RE, Hong SJ, Lim JJ, Cui M, Harpur BA, Hwang E, et al. The long noncoding RNA Pnky is a trans-acting regulator of cortical development in vivo. Dev Cell. 2019;49:632–642.e7.
pubmed: 31112699 pmcid: 6556063 doi: 10.1016/j.devcel.2019.04.032
Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell. 2016;18:637–52.
pubmed: 26996597 doi: 10.1016/j.stem.2016.01.024
Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539:452–5.
pubmed: 27783602 pmcid: 6853796 doi: 10.1038/nature20149
Cajigas I, Chakraborty A, Swyter KR, Luo H, Bastidas M, Nigro M, et al. The Evf2 Ultraconserved enhancer lncRNA functionally and spatially organizes megabase distant genes in the developing forebrain. Mol Cell. 2018;71:956–972.e9.
pubmed: 30146317 pmcid: 6428050 doi: 10.1016/j.molcel.2018.07.024
Lewandowski JP, Lee JC, Hwang T, Sunwoo H, Goldstein JM, Groff AF, et al. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat Commun. 2019;10:5137.
pubmed: 31723143 pmcid: 6853988 doi: 10.1038/s41467-019-12970-4
Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 2012;31:4020–34.
pubmed: 22960638 pmcid: 3474925 doi: 10.1038/emboj.2012.251
Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33:717–26.
pubmed: 19217333 pmcid: 2696186 doi: 10.1016/j.molcel.2009.01.026
Lesueur LL, Mir LM, André FM. Overcoming the specific toxicity of large plasmids electrotransfer in primary cells in vitro. Mol Ther Nucleic Acids. 2016;5:e291.
pubmed: 27111417 pmcid: 5014460 doi: 10.1038/mtna.2016.4
Carlevaro-Fita J, Johnson R. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell. 2019;73:869–83.
pubmed: 30849394 doi: 10.1016/j.molcel.2019.02.008
Guo CJ, Ma XK, Xing YH, Zheng CC, Xu YF, Shan L, et al. Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell. 2020;181:621–636.e22.
pubmed: 32259487 doi: 10.1016/j.cell.2020.03.006
Ha KCH, Blencowe BJ, Morris Q. QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biol. 2018;19:45.
pubmed: 29592814 pmcid: 5874996 doi: 10.1186/s13059-018-1414-4
Kasprzyk R, Fido M, Mamot A, Wanat P, Smietanski M, Kopcial M, et al. Direct high-throughput screening assay for mRNA Cap Guanine-N7 Methyltransferase activity. Chemistry. 2020;26:11266–75.
pubmed: 32259329 pmcid: 7262028 doi: 10.1002/chem.202001036
Li ML, Wang W, Jin ZB. Circular RNAs in the central nervous system. Front Mol Biosci. 2021;8:629593.
pubmed: 33816552 pmcid: 8017125 doi: 10.3389/fmolb.2021.629593
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.
pubmed: 24811520 pmcid: 4121655 doi: 10.1038/nbt.2890
Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409.
pubmed: 25070500 pmcid: 4165365 doi: 10.1186/s13059-014-0409-z
Gokool A, Loy CT, Halliday GM, Voineagu I. Circular RNAs: The brain transcriptome comes full circle. Trends Neurosci. 2020;43:752–66.
pubmed: 32829926 doi: 10.1016/j.tins.2020.07.007
Zhang Z, Yang T, Xiao J. Circular RNAs: Promising biomarkers for human diseases. EBioMedicine. 2018;34:267–74.
pubmed: 30078734 pmcid: 6116471 doi: 10.1016/j.ebiom.2018.07.036
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.
pubmed: 31395983 doi: 10.1038/s41576-019-0158-7
He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6:185.
pubmed: 34016945 pmcid: 8137869 doi: 10.1038/s41392-021-00569-5
Pamudurti NR, Patop IL, Krishnamoorthy A, Ashwal-Fluss R, Bartok O, Kadener S. An in vivo strategy for knockdown of circular RNAs. Cell Discov. 2020;6:52.
pubmed: 32818061 pmcid: 7417560 doi: 10.1038/s41421-020-0182-y
Gao X, Ma XK, Li X, Li GW, Liu CX, Zhang J, et al. Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biol. 2022;23:16.
pubmed: 35012611 pmcid: 8744252 doi: 10.1186/s13059-021-02563-0
Suenkel C, Cavalli D, Massalini S, Calegari F, Rajewsky N. A highly conserved circular RNA is required to keep neural cells in a progenitor state in the mammalian brain. Cell Rep. 2020;30:2170–2179.e5.
pubmed: 32075758 doi: 10.1016/j.celrep.2020.01.083
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357:eaam8526.
pubmed: 28798046 doi: 10.1126/science.aam8526
Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions. Development. 2016;143:1838–47.
pubmed: 27246710 pmcid: 4920157 doi: 10.1242/dev.128074
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science. 2010;329:1355–8.
pubmed: 20829488 pmcid: 3133607 doi: 10.1126/science.1192272
Borchardt EK, Meganck RM, Vincent HA, Ball CB, Ramos SBV, Moorman NJ, et al. Inducing circular RNA formation using the CRISPR endoribonuclease Csy4. RNA. 2017;23:619–27.
pubmed: 28223408 pmcid: 5393173 doi: 10.1261/rna.056838.116
Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, et al. Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci. 2018;38:32–50.
pubmed: 29114076 pmcid: 6705810 doi: 10.1523/JNEUROSCI.1348-17.2017
Henao-Mejia J, Williams A, Rongvaux A, Stein J, Hughes C, Flavell RA. Generation of genetically modified mice using the CRISPR-Cas9 genome-editing system. Cold Spring Harb Protoc. 2016;2016:pdb.prot090704.
pubmed: 26832688 pmcid: 4905559 doi: 10.1101/pdb.prot090704
Perry RB, Hezroni H, Goldrich MJ, Ulitsky I. Regulation of neuroregeneration by long noncoding RNAs. Mol Cell. 2018;72:553–567.e5.
pubmed: 30401432 pmcid: 6542662 doi: 10.1016/j.molcel.2018.09.021
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25:1234–57.
pubmed: 29801422 pmcid: 6058482 doi: 10.1080/10717544.2018.1474964
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov. 2021;20:362–83.
pubmed: 33649582 doi: 10.1038/s41573-021-00139-y
Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, et al. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front Genet. 2021;12:673286.
pubmed: 34054927 pmcid: 8149999 doi: 10.3389/fgene.2021.673286
Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, et al. Non-Viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl. 2017;56:1059–63.
pubmed: 27981708 doi: 10.1002/anie.201610209
Yin L, Song Z, Kim KH, Zheng N, Tang H, Lu H, et al. Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials. 2013;34:2340–9.
pubmed: 23283350 doi: 10.1016/j.biomaterials.2012.11.064
Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015;54:12029–33.
pubmed: 26310292 pmcid: 4677991 doi: 10.1002/anie.201506030
Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018;2:497–507.
pubmed: 30948824 pmcid: 6544395 doi: 10.1038/s41551-018-0252-8
Duan L, Xu L, Xu X, Qin Z, Zhou X, Xiao Y, et al. Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale. 2021;13:1387–97.
pubmed: 33350419 doi: 10.1039/D0NR07622H
Zhu S, Li W, Liu J, Chen CH, Liao Q, Xu P, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol. 2016;34:1279–86.
pubmed: 27798563 pmcid: 5592164 doi: 10.1038/nbt.3715
Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015;25:1147–57.
pubmed: 26063738 pmcid: 4509999 doi: 10.1101/gr.191452.115
Yuan P, Zhang H, Cai C, Zhu S, Zhou Y, Yang X, et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 2015;25:157–68.
pubmed: 25547119 doi: 10.1038/cr.2014.169
Liu Y, Cao Z, Wang Y, Guo Y, Xu P, Yuan P, et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol 2018;36:1203–10.
doi: 10.1038/nbt.4283
Cai P, Otten ABC, Cheng B, Ishii MA, Zhang W, Huang B, et al. A genome-wide long noncoding RNA CRISPRi screen identifies PRANCR as a novel regulator of epidermal homeostasis. Genome Res. 2020;30:22–34.
pubmed: 31804951 pmcid: 6961571 doi: 10.1101/gr.251561.119
Xu D, Cai Y, Tang L, Han X, Gao F, Cao H, et al. A CRISPR/Cas13-based approach demonstrates biological relevance of vlinc class of long non-coding RNAs in anticancer drug response. Sci Rep. 2020;10:1794.
pubmed: 32020014 pmcid: 7000768 doi: 10.1038/s41598-020-58104-5
Bester AC, Lee JD, Chavez A, Lee YR, Nachmani D, Vora S, et al. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell. 2018;173:649–664.e20.
pubmed: 29677511 pmcid: 6061940 doi: 10.1016/j.cell.2018.03.052
Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, et al. Best practice standards for circular RNA research. Nat Methods. 2022;19:1208–20.
pubmed: 35618955 pmcid: 9759028 doi: 10.1038/s41592-022-01487-2
García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J. The emerging role of long non-coding RNAs and MicroRNAs in neurodegenerative diseases: a perspective of machine learning. Biomolecules. 2021;11:1132.
pubmed: 34439798 pmcid: 8391852 doi: 10.3390/biom11081132
Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des. 2012;80:787–809.
pubmed: 22974319 doi: 10.1111/cbdd.12052
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting non-coding RNA for Glioblastoma therapy: the challenge of overcomes the blood-brain barrier. Front Med Technol. 2021;3:678593.
pubmed: 35047931 pmcid: 8757885 doi: 10.3389/fmedt.2021.678593
Zhong J, Jiang L, Huang Z, Zhang H, Cheng C, Liu H, et al. The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav Immun. 2017;65:183–94.
pubmed: 28483659 doi: 10.1016/j.bbi.2017.05.001
Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, et al. LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol. 2017;54:7670–85.
pubmed: 27844279 doi: 10.1007/s12035-016-0246-z
Lu J, Xu F, Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 2020;260:118305.
pubmed: 32827544 doi: 10.1016/j.lfs.2020.118305
Mu M, Niu W, Zhang X, Hu S, Niu C. LncRNA BCYRN1 inhibits glioma tumorigenesis by competitively binding with miR-619-5p to regulate CUEDC2 expression and the PTEN/AKT/p21 pathway. Oncogene. 2020;39:6879–92.
pubmed: 32978519 pmcid: 7644463 doi: 10.1038/s41388-020-01466-x
Zhang X, Zhu XL, Ji BY, Cao X, Yu LJ, Zhang Y, et al. LncRNA-1810034E14Rik reduces microglia activation in experimental ischemic stroke. J Neuroinflammation. 2019;16:75.
pubmed: 30961627 pmcid: 6452518 doi: 10.1186/s12974-019-1464-x
Gao YF, Liu JY, Mao XY, He ZW, Zhu T, Wang ZB, et al. LncRNA FOXD1-AS1 acts as a potential oncogenic biomarker in glioma. CNS Neurosci Ther. 2020;26:66–75.
pubmed: 31102349 doi: 10.1111/cns.13152
Wang Y, Shan A, Zhou Z, Li W, Xie L, Du B, et al. LncRNA TCONS_00004099-derived microRNA regulates oncogenesis through PTPRF in gliomas. Ann Transl Med. 2021;9:1023.
pubmed: 34277823 pmcid: 8267291 doi: 10.21037/atm-21-2442
Li EY, Zhao PJ, Jian J, Yin BQ, Sun ZY, Xu CX, et al. LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF. Cell Cycle. 2019;18:156–66.
pubmed: 30563429 doi: 10.1080/15384101.2018.1560202
Matsukawa K, Kukharsky MS, Park SK, Park S, Watanabe N, Iwatsubo T, et al. Long non-coding RNA NEAT1_1 ameliorates TDP-43 toxicity in in vivo models of TDP-43 proteinopathy. RNA Biol. 2021;18:1546–54.
pubmed: 33427561 pmcid: 8583295 doi: 10.1080/15476286.2020.1860580
Zhang Y, Xia Q, Lin J. LncRNA H19 attenuates Apoptosis in MPTP-induced Parkinson’s disease through regulating miR-585-3p/PIK3R3. Neurochem Res. 2020;45:1700–10.
pubmed: 32356199 doi: 10.1007/s11064-020-03035-w
Feng X, Zhan F, Luo D, Hu J, Wei G, Hua F, et al. LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p. Brain Behav Immun. 2021;98:283–98.
pubmed: 34455059 doi: 10.1016/j.bbi.2021.08.230
Sun J, He D, Fu Y, Zhang R, Guo H, Wang Z, et al. A novel lncRNA ARST represses glioma progression by inhibiting ALDOA-mediated actin cytoskeleton integrity. J Exp Clin Cancer Res. 2021;40:187.
pubmed: 34099027 pmcid: 8183030 doi: 10.1186/s13046-021-01977-9
Xu H, Zhang B, Yang Y, Li Z, Zhao P, Wu W, et al. LncRNA MIR4435-2HG potentiates the proliferation and invasion of glioblastoma cells via modulating miR-1224-5p/TGFBR2 axis. J Cell Mol Med. 2020;24:6362–72.
pubmed: 32319715 pmcid: 7294147 doi: 10.1111/jcmm.15280
Yao P, Li YL, Chen Y, Shen W, Wu KY, Xu WH. Overexpression of long non-coding RNA Rian attenuates cell apoptosis from cerebral ischemia-reperfusion injury via Rian/miR-144-3p/GATA3 signaling. Gene. 2020;737:144411.
pubmed: 32006596 doi: 10.1016/j.gene.2020.144411

Auteurs

Tara Srinivas (T)

Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain.

Edilene Siqueira (E)

Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain.

Sonia Guil (S)

Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain. sguil@carrerasresearch.org.
Germans Trias i Pujol Health Science Research Institute, 08916, Badalona, Barcelona, Catalonia, Spain. sguil@carrerasresearch.org.

Classifications MeSH