Techniques for investigating lncRNA transcript functions in neurodevelopment.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
25 Dec 2023
25 Dec 2023
Historique:
received:
18
07
2023
accepted:
12
12
2023
revised:
05
12
2023
medline:
26
12
2023
pubmed:
26
12
2023
entrez:
25
12
2023
Statut:
aheadofprint
Résumé
Long noncoding RNAs (lncRNAs) are sequences of 200 nucleotides or more that are transcribed from a large portion of the mammalian genome. While hypothesized to have a variety of biological roles, many lncRNAs remain largely functionally uncharacterized due to unique challenges associated with their investigation. For example, some lncRNAs overlap with other genomic loci, are expressed in a cell-type-specific manner, and/or are differentially processed at the post-transcriptional level. The mammalian CNS contains a vast diversity of lncRNAs, and lncRNAs are highly abundant in the mammalian brain. However, interrogating lncRNA function in models of the CNS, particularly in vivo, can be complex and challenging. Here we review the breadth of methods used to investigate lncRNAs in the CNS, their merits, and the understanding they can provide with respect to neurodevelopment and pathophysiology. We discuss remaining challenges in the field and provide recommendations to assay lncRNAs based on current methods.
Identifiants
pubmed: 38145986
doi: 10.1038/s41380-023-02377-5
pii: 10.1038/s41380-023-02377-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
ID : 2021SGR01309
Informations de copyright
© 2023. The Author(s).
Références
Lander S, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.
pubmed: 11237011
doi: 10.1038/35057062
ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004;306:636–40.
doi: 10.1126/science.1105136
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.
pubmed: 22955620
pmcid: 3684276
doi: 10.1038/nature11233
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
doi: 10.1038/nature11247
Derrien T, Guigó R, Johnson R. The long non-coding RNAs: A new (P)layer in the “Dark Matter. Front Genet. 2012;2:107.
pubmed: 22303401
pmcid: 3266617
doi: 10.3389/fgene.2011.00107
Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, et al. GENCODE 2021. Nucleic Acids Res. 2021;49:D916–D923.
pubmed: 33270111
doi: 10.1093/nar/gkaa1087
Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 2018;19:535–48.
pubmed: 29795125
pmcid: 6451964
doi: 10.1038/s41576-018-0017-y
Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H, et al. NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 2018;46:D308–D314.
pubmed: 29140524
doi: 10.1093/nar/gkx1107
Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21:542–51.
pubmed: 31048766
doi: 10.1038/s41556-019-0311-8
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.
pubmed: 22955828
pmcid: 3771521
doi: 10.1126/science.1222794
Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13:528–41.
pubmed: 22814587
pmcid: 3478095
doi: 10.1038/nrn3234
Liu S, Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res. 2016;5:F1000 Faculty Rev–182.
pubmed: 26962443
doi: 10.12688/f1000research.7223.1
Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015;88:861–77.
pubmed: 26637795
doi: 10.1016/j.neuron.2015.09.045
Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443:167–72.
pubmed: 16915236
doi: 10.1038/nature05113
Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 2006;16:11–9.
pubmed: 16344565
pmcid: 1356124
doi: 10.1101/gr.4200206
Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA. 2008;105:716–21.
pubmed: 18184812
pmcid: 2206602
doi: 10.1073/pnas.0706729105
Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31:522–33.
pubmed: 22193719
doi: 10.1038/emboj.2011.459
Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29:3082–93.
pubmed: 20729808
pmcid: 2944070
doi: 10.1038/emboj.2010.199
Pavlaki I, Alammari F, Sun B, Clark N, Sirey T, Lee S, et al. The long non-coding RNA Paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. EMBO J. 2018;37:e98219.
pubmed: 29661885
pmcid: 5978383
doi: 10.15252/embj.201798219
Mattick JS. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays. 2003;25:930–9.
pubmed: 14505360
doi: 10.1002/bies.10332
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.
pubmed: 33353982
doi: 10.1038/s41580-020-00315-9
Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339–46.
pubmed: 22337053
pmcid: 4197003
doi: 10.1038/nature10887
Hacisuleyman E, Shukla CJ, Weiner CL, Rinn JL. Function and evolution of local repeats in the Firre locus. Nat Commun. 2016;7:11021.
pubmed: 27009974
pmcid: 4820808
doi: 10.1038/ncomms11021
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol. 2020;55:662–90.
pubmed: 33043695
doi: 10.1080/10409238.2020.1828259
Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: Emerging therapeutic opportunities. Mol Ther. 2023;31:1550–61.
pubmed: 36793211
doi: 10.1016/j.ymthe.2023.02.008
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21.
pubmed: 24296535
doi: 10.1038/nrg3606
Montalbano A, Canver MC, Sanjana NE. High-throughput approaches to pinpoint function within the noncoding genome. Mol Cell. 2017;68:44–59.
pubmed: 28985510
pmcid: 5701515
doi: 10.1016/j.molcel.2017.09.017
Andergassen D, Rinn JL. From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nat Rev Genet. 2022;23:229–43.
pubmed: 34837040
doi: 10.1038/s41576-021-00427-8
Kleaveland B, Shi CY, Stefano J, Bartel DP. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell. 2018;174:350–362.e17.
pubmed: 29887379
pmcid: 6559361
doi: 10.1016/j.cell.2018.05.022
Kim JS. Genome editing comes of age. Nat Protoc. 2016;11:1573–8.
pubmed: 27490630
doi: 10.1038/nprot.2016.104
Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405.
pubmed: 23664777
pmcid: 3694601
doi: 10.1016/j.tibtech.2013.04.004
Heidenreich M, Zhang F. Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci. 2016;17:36–44.
pubmed: 26656253
doi: 10.1038/nrn.2015.2
Lander ES. The heroes of CRISPR. Cell. 2016;164:18–28.
pubmed: 26771483
doi: 10.1016/j.cell.2015.12.041
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13:722–36.
pubmed: 26411297
pmcid: 5426118
doi: 10.1038/nrmicro3569
Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods Mol Biol. 2015;1239:197–217.
pubmed: 25408407
doi: 10.1007/978-1-4939-1862-1_10
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78.
pubmed: 28605718
pmcid: 5776717
doi: 10.1016/j.mib.2017.05.008
Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361:866–9.
pubmed: 30166482
pmcid: 6455913
doi: 10.1126/science.aat5011
Janga H, Aznaourova M, Boldt F, Damm K, Grünweller A, Schulte LN. Cas9-mediated excision of proximal DNaseI/H3K4me3 signatures confers robust silencing of microRNA and long non-coding RNA genes. PLoS One. 2018;13:e0193066.
pubmed: 29451908
pmcid: 5815609
doi: 10.1371/journal.pone.0193066
Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015;16:299–311.
pubmed: 25854182
pmcid: 4503232
doi: 10.1038/nrg3899
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
pubmed: 24157548
pmcid: 3969860
doi: 10.1038/nprot.2013.143
Nishiyama J. Genome editing in the mammalian brain using the CRISPR-Cas system. Neurosci Res. 2019;141:4–12.
pubmed: 30076877
doi: 10.1016/j.neures.2018.07.003
Hanna RE, Doench JG. Design and analysis of CRISPR-Cas experiments. Nat Biotechnol. 2020;38:813–23.
pubmed: 32284587
doi: 10.1038/s41587-020-0490-7
Han J, Zhang J, Chen L, Shen B, Zhou J, Hu B, et al. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol. 2014;11:829–35.
pubmed: 25137067
pmcid: 4179957
doi: 10.4161/rna.29624
Bergstrand S, O’Brien EM, Coucoravas C, Hrossova D, Peirasmaki D, Schmidli S, et al. Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK. Nat Commun. 2022;13:1015.
pubmed: 35197472
pmcid: 8866460
doi: 10.1038/s41467-022-28646-5
Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749.
pubmed: 24381249
pmcid: 3874104
doi: 10.7554/eLife.01749
Allou L, Balzano S, Magg A, Quinodoz M, Royer-Bertrand B, Schöpflin R, et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature. 2021;592:93–98.
pubmed: 33568816
Faheem M, Deneault E, Alexandrova R, Rodrigues DC, Pellecchia G, Shum C, et al. Disruption of DDX53 coding sequence has limited impact on iPSC-derived human NGN2 neurons. BMC Med Genomics. 2023;16:5.
pubmed: 36635662
pmcid: 9837974
doi: 10.1186/s12920-022-01425-3
Jacobs EZ, Warrier S, Volders PJ, D’haene E, Van Lombergen E, Vantomme L, et al. CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells. Sci Rep. 2017;7:16650.
pubmed: 29192200
pmcid: 5709416
doi: 10.1038/s41598-017-16932-y
Ma M, Xiong W, Hu F, Deng MF, Huang X, Chen JG, et al. A novel pathway regulates social hierarchy via lncRNA AtLAS and postsynaptic synapsin IIb. Cell Res. 2020;30:105–18.
pubmed: 31959917
pmcid: 7015055
doi: 10.1038/s41422-020-0273-1
Labonté B, Abdallah K, Maussion G, Yerko V, Yang J, Bittar T, et al. Regulation of impulsive and aggressive behaviours by a novel lncRNA. Mol Psychiatry. 2021;26:3751–64.
pubmed: 31907380
doi: 10.1038/s41380-019-0637-4
Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol. 2015;33:102–6.
pubmed: 25326897
doi: 10.1038/nbt.3055
Hana S, Peterson M, McLaughlin H, Marshall E, Fabian AJ, McKissick O, et al. Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene Ther. 2021;28:646–58.
pubmed: 33558692
pmcid: 8599009
doi: 10.1038/s41434-021-00224-2
Straub C, Granger AJ, Saulnier JL, Sabatini BL. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS One. 2014;9:e105584.
pubmed: 25140704
pmcid: 4139396
doi: 10.1371/journal.pone.0105584
Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22:524–8.
pubmed: 30858603
doi: 10.1038/s41593-019-0352-0
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507.
pubmed: 31147612
pmcid: 7079207
doi: 10.1038/s41580-019-0131-5
Wolter JM, Mao H, Fragola G, Simon JM, Krantz JL, Bazick HO, et al. Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Nature. 2020;587:281–4.
pubmed: 33087932
pmcid: 8020672
doi: 10.1038/s41586-020-2835-2
Shechner DM, Hacisuleyman E, Younger ST, Rinn JL. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. 2015;12:664–70.
pubmed: 26030444
pmcid: 4821475
doi: 10.1038/nmeth.3433
Cheng TL, Qiu Z. Long non-coding RNA tagging and expression manipulation via CRISPR/Cas9-mediated targeted insertion. Protein Cell. 2018;9:820–5.
pubmed: 28875452
doi: 10.1007/s13238-017-0464-9
Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet. 2020;21:102–17.
pubmed: 31729473
doi: 10.1038/s41576-019-0184-5
Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science. 2012;338:1469–72.
pubmed: 23239737
doi: 10.1126/science.1228110
Beerli RR, Dreier B, Barbas CF 3rd. Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci USA. 2000;97:1495–500.
pubmed: 10660690
pmcid: 26462
doi: 10.1073/pnas.040552697
Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA, Guilak F, et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods. 2013;10:239–42.
pubmed: 23377379
pmcid: 3719416
doi: 10.1038/nmeth.2361
Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD, et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. 2013;10:243–5.
pubmed: 23396285
pmcid: 3584229
doi: 10.1038/nmeth.2366
Mercer AC, Gaj T, Sirk SJ, Lamb BM, Barbas CF 3rd. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth Biol. 2014;3:723–30.
pubmed: 24251925
doi: 10.1021/sb400114p
Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23:1163–71.
pubmed: 23979020
pmcid: 3790238
doi: 10.1038/cr.2013.122
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8.
pubmed: 25494202
doi: 10.1038/nature14136
Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12:326–8.
pubmed: 25730490
pmcid: 4393883
doi: 10.1038/nmeth.3312
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159:635–46.
pubmed: 25307933
pmcid: 4252608
doi: 10.1016/j.cell.2014.09.039
Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci. 2018;21:440–6.
pubmed: 29335603
doi: 10.1038/s41593-017-0060-6
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic modulation of stem cells in neurodevelopment: the role of methylation and acetylation. Front Cell Neurosci. 2017;11:23.
pubmed: 28223921
pmcid: 5293809
doi: 10.3389/fncel.2017.00023
Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106:11667–72.
pubmed: 19571010
pmcid: 2704857
doi: 10.1073/pnas.0904715106
Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.
pubmed: 20616235
pmcid: 2967777
doi: 10.1126/science.1192002
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.
pubmed: 20393566
pmcid: 3049919
doi: 10.1038/nature08975
West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55:791–802.
pubmed: 25155612
pmcid: 4428586
doi: 10.1016/j.molcel.2014.07.012
An H, Williams NG, Shelkovnikova TA. NEAT1 and paraspeckles in neurodegenerative diseases: A missing lnc found? Noncoding RNA Res. 2018;3:243–52.
pubmed: 30533572
pmcid: 6257911
doi: 10.1016/j.ncrna.2018.11.003
Pereira Fernandes D, Bitar M, Jacobs FMJ, Barry G. Long non-coding RNAs in neuronal aging. Noncoding RNA. 2018;4:12.
pubmed: 29670042
pmcid: 6027360
Butler AA, Johnston DR, Kaur S, Lubin FD. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci Signal. 2019;12:eaaw9277.
pubmed: 31266852
pmcid: 7219525
doi: 10.1126/scisignal.aaw9277
Soubeyrand S, Lau P, Peters V, McPherson R. Off-target effects of CRISPRa on interleukin-6 expression. PLoS One. 2019;14:e0224113. Oct 28
pubmed: 31658298
pmcid: 6816553
doi: 10.1371/journal.pone.0224113
Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res. 2017;45:e12.
pubmed: 28180319
Chen W, Zhang G, Li J, Zhang X, Huang S, Xiang S, et al. CRISPRlnc: a manually curated database of validated sgRNAs for lncRNAs. Nucleic Acids Res. 2019;47:D63–D68.
pubmed: 30285246
doi: 10.1093/nar/gky904
Wang XW, Hu LF, Hao J, Liao LQ, Chiu YT, Shi M, et al. A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol. 2019;21:522–30.
pubmed: 30804503
doi: 10.1038/s41556-019-0292-7
Zhao YT, Wang Y. Monitoring the promoter activity of long noncoding RNAs and stem cell differentiation through knock-in of sgRNA flanked by tRNA in an intron. Cell Discov. 2021;7:45.
pubmed: 34127653
pmcid: 8203696
doi: 10.1038/s41421-021-00272-3
Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature. 2017;548:343–6.
pubmed: 28792927
pmcid: 5706657
doi: 10.1038/nature23451
Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell. 2018;23:758–771.e8.
pubmed: 30318302
pmcid: 6214761
doi: 10.1016/j.stem.2018.09.003
Zhang L, Wang H. Long non-coding RNA in CNS injuries: a new target for therapeutic intervention. Mol Ther Nucleic Acids. 2019;17:754–66.
pubmed: 31437654
pmcid: 6709344
doi: 10.1016/j.omtn.2019.07.013
Engreitz J, Abudayyeh O, Gootenberg J, Zhang F. CRISPR tools for systematic studies of RNA regulation. Cold Spring Harb Perspect Biol. 2019;11:a035386.
pubmed: 31371352
pmcid: 6671937
doi: 10.1101/cshperspect.a035386
Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
pubmed: 30846871
doi: 10.1038/s41573-019-0017-4
Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021;20:427–53.
pubmed: 33762737
doi: 10.1038/s41573-021-00162-z
Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46:1584–1600.
pubmed: 29240946
doi: 10.1093/nar/gkx1239
Liang XH, Sun H, Nichols JG, Crooke ST. RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther. 2017;25:2075–92.
pubmed: 28663102
pmcid: 5589097
doi: 10.1016/j.ymthe.2017.06.002
Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM. Functional complexity and regulation through RNA dynamics. Nature. 2012;482:322–30.
pubmed: 22337051
pmcid: 3320162
doi: 10.1038/nature10885
Boudreau RL, Davidson BL. RNAi therapeutics for CNS disorders. Brain Res. 2010;1338:112–21.
pubmed: 20307511
doi: 10.1016/j.brainres.2010.03.038
Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14:9–21.
pubmed: 29192260
doi: 10.1038/nrneurol.2017.148
Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409–12.
pubmed: 25470045
doi: 10.1038/nature13975
Lin B, Lu L, Wang Y, Zhang Q, Wang Z, Cheng G, et al. Nanomedicine directs neuronal differentiation of neural stem cells via silencing long noncoding RNA for stroke therapy. Nano Lett. 2021;21:806–15.
pubmed: 33395306
doi: 10.1021/acs.nanolett.0c04560
Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res. 2011;21:1944–54.
pubmed: 21844124
pmcid: 3205578
doi: 10.1101/gr.122358.111
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov. 2021;20:629–51.
pubmed: 34145432
pmcid: 8212082
doi: 10.1038/s41573-021-00219-z
Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev. 2007;107:3715–43.
pubmed: 17715981
doi: 10.1021/cr0306743
Cerchia L, de Franciscis V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 2010;28:517–25.
pubmed: 20719399
doi: 10.1016/j.tibtech.2010.07.005
Lakhin AV, Tarantul VZ, Gening LV. Aptamers: problems, solutions and prospects. Acta Nat. 2013;5:34–43.
doi: 10.32607/20758251-2013-5-4-34-43
Wang YL, Chang LC, Chen KB, Wang SC. Aptamer-guided targeting of the intracellular long-noncoding RNA HOTAIR. Am J Cancer Res. 2021;11:945–54.
pubmed: 33791165
pmcid: 7994153
Zaiki Y, Wong TW. Targeting genetic tool for long non-coding RNA of cancer stem cells with aptamer-guided nanocarriers. Expert Opin Drug Deliv. 2021;18:1791–3.
pubmed: 34605336
doi: 10.1080/17425247.2021.1989408
Tran BT, Kim J, Ahn DR. Systemic delivery of aptamer-drug conjugates for cancer therapy using enzymatically generated self-assembled DNA nanoparticles. Nanoscale. 2020;12:22945–51.
pubmed: 33188383
doi: 10.1039/D0NR05652A
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109:E2579–86.
pubmed: 22949671
pmcid: 3465414
doi: 10.1073/pnas.1208507109
O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. 2014;516:263–6.
pubmed: 25274302
pmcid: 4268322
doi: 10.1038/nature13769
Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA. RNA-dependent RNA targeting by CRISPR-Cas9. Elife. 2018;7:e32724.
pubmed: 29303478
pmcid: 5796797
doi: 10.7554/eLife.32724
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol Cell. 2015;60:385–97.
pubmed: 26593719
pmcid: 4660269
doi: 10.1016/j.molcel.2015.10.008
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550:280–4.
pubmed: 28976959
pmcid: 5706658
doi: 10.1038/nature24049
Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, et al. Glia-to-Neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell. 2020;181:590–603.e16.
pubmed: 32272060
doi: 10.1016/j.cell.2020.03.024
Li J, Shen Z, Liu Y, Yan Z, Liu Y, Lin X, et al. A high-fidelity RNA-targeting Cas13 restores paternal Ube3a expression and improves motor functions in Angelman syndrome mice. Mol Ther. 2023;31:2286–95.
pubmed: 36805082
doi: 10.1016/j.ymthe.2023.02.015
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27.
pubmed: 29070703
pmcid: 5793859
doi: 10.1126/science.aaq0180
Yablonovitch AL, Deng P, Jacobson D, Li JB. The evolution and adaptation of A-to-I RNA editing. PLoS Genet. 2017;13:e1007064.
pubmed: 29182635
pmcid: 5705066
doi: 10.1371/journal.pgen.1007064
Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci. 2020;21:36–51.
pubmed: 31804615
doi: 10.1038/s41583-019-0244-z
Migeon BR, Kazi E, Haisley-Royster C, Hu J, Reeves R, Call L, et al. Human X inactivation center induces random X chromosome inactivation in male transgenic mice. Genomics. 1999;59:113–21.
pubmed: 10409422
doi: 10.1006/geno.1999.5861
Ramos AD, Andersen RE, Liu SJ, Nowakowski TJ, Hong SJ, Gertz C, et al. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015;16:439–47.
pubmed: 25800779
pmcid: 4388801
doi: 10.1016/j.stem.2015.02.007
Andersen RE, Hong SJ, Lim JJ, Cui M, Harpur BA, Hwang E, et al. The long noncoding RNA Pnky is a trans-acting regulator of cortical development in vivo. Dev Cell. 2019;49:632–642.e7.
pubmed: 31112699
pmcid: 6556063
doi: 10.1016/j.devcel.2019.04.032
Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell. 2016;18:637–52.
pubmed: 26996597
doi: 10.1016/j.stem.2016.01.024
Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539:452–5.
pubmed: 27783602
pmcid: 6853796
doi: 10.1038/nature20149
Cajigas I, Chakraborty A, Swyter KR, Luo H, Bastidas M, Nigro M, et al. The Evf2 Ultraconserved enhancer lncRNA functionally and spatially organizes megabase distant genes in the developing forebrain. Mol Cell. 2018;71:956–972.e9.
pubmed: 30146317
pmcid: 6428050
doi: 10.1016/j.molcel.2018.07.024
Lewandowski JP, Lee JC, Hwang T, Sunwoo H, Goldstein JM, Groff AF, et al. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat Commun. 2019;10:5137.
pubmed: 31723143
pmcid: 6853988
doi: 10.1038/s41467-019-12970-4
Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 2012;31:4020–34.
pubmed: 22960638
pmcid: 3474925
doi: 10.1038/emboj.2012.251
Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33:717–26.
pubmed: 19217333
pmcid: 2696186
doi: 10.1016/j.molcel.2009.01.026
Lesueur LL, Mir LM, André FM. Overcoming the specific toxicity of large plasmids electrotransfer in primary cells in vitro. Mol Ther Nucleic Acids. 2016;5:e291.
pubmed: 27111417
pmcid: 5014460
doi: 10.1038/mtna.2016.4
Carlevaro-Fita J, Johnson R. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell. 2019;73:869–83.
pubmed: 30849394
doi: 10.1016/j.molcel.2019.02.008
Guo CJ, Ma XK, Xing YH, Zheng CC, Xu YF, Shan L, et al. Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell. 2020;181:621–636.e22.
pubmed: 32259487
doi: 10.1016/j.cell.2020.03.006
Ha KCH, Blencowe BJ, Morris Q. QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biol. 2018;19:45.
pubmed: 29592814
pmcid: 5874996
doi: 10.1186/s13059-018-1414-4
Kasprzyk R, Fido M, Mamot A, Wanat P, Smietanski M, Kopcial M, et al. Direct high-throughput screening assay for mRNA Cap Guanine-N7 Methyltransferase activity. Chemistry. 2020;26:11266–75.
pubmed: 32259329
pmcid: 7262028
doi: 10.1002/chem.202001036
Li ML, Wang W, Jin ZB. Circular RNAs in the central nervous system. Front Mol Biosci. 2021;8:629593.
pubmed: 33816552
pmcid: 8017125
doi: 10.3389/fmolb.2021.629593
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.
pubmed: 24811520
pmcid: 4121655
doi: 10.1038/nbt.2890
Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409.
pubmed: 25070500
pmcid: 4165365
doi: 10.1186/s13059-014-0409-z
Gokool A, Loy CT, Halliday GM, Voineagu I. Circular RNAs: The brain transcriptome comes full circle. Trends Neurosci. 2020;43:752–66.
pubmed: 32829926
doi: 10.1016/j.tins.2020.07.007
Zhang Z, Yang T, Xiao J. Circular RNAs: Promising biomarkers for human diseases. EBioMedicine. 2018;34:267–74.
pubmed: 30078734
pmcid: 6116471
doi: 10.1016/j.ebiom.2018.07.036
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.
pubmed: 31395983
doi: 10.1038/s41576-019-0158-7
He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6:185.
pubmed: 34016945
pmcid: 8137869
doi: 10.1038/s41392-021-00569-5
Pamudurti NR, Patop IL, Krishnamoorthy A, Ashwal-Fluss R, Bartok O, Kadener S. An in vivo strategy for knockdown of circular RNAs. Cell Discov. 2020;6:52.
pubmed: 32818061
pmcid: 7417560
doi: 10.1038/s41421-020-0182-y
Gao X, Ma XK, Li X, Li GW, Liu CX, Zhang J, et al. Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biol. 2022;23:16.
pubmed: 35012611
pmcid: 8744252
doi: 10.1186/s13059-021-02563-0
Suenkel C, Cavalli D, Massalini S, Calegari F, Rajewsky N. A highly conserved circular RNA is required to keep neural cells in a progenitor state in the mammalian brain. Cell Rep. 2020;30:2170–2179.e5.
pubmed: 32075758
doi: 10.1016/j.celrep.2020.01.083
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357:eaam8526.
pubmed: 28798046
doi: 10.1126/science.aam8526
Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions. Development. 2016;143:1838–47.
pubmed: 27246710
pmcid: 4920157
doi: 10.1242/dev.128074
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science. 2010;329:1355–8.
pubmed: 20829488
pmcid: 3133607
doi: 10.1126/science.1192272
Borchardt EK, Meganck RM, Vincent HA, Ball CB, Ramos SBV, Moorman NJ, et al. Inducing circular RNA formation using the CRISPR endoribonuclease Csy4. RNA. 2017;23:619–27.
pubmed: 28223408
pmcid: 5393173
doi: 10.1261/rna.056838.116
Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, et al. Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci. 2018;38:32–50.
pubmed: 29114076
pmcid: 6705810
doi: 10.1523/JNEUROSCI.1348-17.2017
Henao-Mejia J, Williams A, Rongvaux A, Stein J, Hughes C, Flavell RA. Generation of genetically modified mice using the CRISPR-Cas9 genome-editing system. Cold Spring Harb Protoc. 2016;2016:pdb.prot090704.
pubmed: 26832688
pmcid: 4905559
doi: 10.1101/pdb.prot090704
Perry RB, Hezroni H, Goldrich MJ, Ulitsky I. Regulation of neuroregeneration by long noncoding RNAs. Mol Cell. 2018;72:553–567.e5.
pubmed: 30401432
pmcid: 6542662
doi: 10.1016/j.molcel.2018.09.021
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25:1234–57.
pubmed: 29801422
pmcid: 6058482
doi: 10.1080/10717544.2018.1474964
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov. 2021;20:362–83.
pubmed: 33649582
doi: 10.1038/s41573-021-00139-y
Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, et al. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front Genet. 2021;12:673286.
pubmed: 34054927
pmcid: 8149999
doi: 10.3389/fgene.2021.673286
Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, et al. Non-Viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl. 2017;56:1059–63.
pubmed: 27981708
doi: 10.1002/anie.201610209
Yin L, Song Z, Kim KH, Zheng N, Tang H, Lu H, et al. Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials. 2013;34:2340–9.
pubmed: 23283350
doi: 10.1016/j.biomaterials.2012.11.064
Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015;54:12029–33.
pubmed: 26310292
pmcid: 4677991
doi: 10.1002/anie.201506030
Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018;2:497–507.
pubmed: 30948824
pmcid: 6544395
doi: 10.1038/s41551-018-0252-8
Duan L, Xu L, Xu X, Qin Z, Zhou X, Xiao Y, et al. Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale. 2021;13:1387–97.
pubmed: 33350419
doi: 10.1039/D0NR07622H
Zhu S, Li W, Liu J, Chen CH, Liao Q, Xu P, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol. 2016;34:1279–86.
pubmed: 27798563
pmcid: 5592164
doi: 10.1038/nbt.3715
Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015;25:1147–57.
pubmed: 26063738
pmcid: 4509999
doi: 10.1101/gr.191452.115
Yuan P, Zhang H, Cai C, Zhu S, Zhou Y, Yang X, et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 2015;25:157–68.
pubmed: 25547119
doi: 10.1038/cr.2014.169
Liu Y, Cao Z, Wang Y, Guo Y, Xu P, Yuan P, et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol 2018;36:1203–10.
doi: 10.1038/nbt.4283
Cai P, Otten ABC, Cheng B, Ishii MA, Zhang W, Huang B, et al. A genome-wide long noncoding RNA CRISPRi screen identifies PRANCR as a novel regulator of epidermal homeostasis. Genome Res. 2020;30:22–34.
pubmed: 31804951
pmcid: 6961571
doi: 10.1101/gr.251561.119
Xu D, Cai Y, Tang L, Han X, Gao F, Cao H, et al. A CRISPR/Cas13-based approach demonstrates biological relevance of vlinc class of long non-coding RNAs in anticancer drug response. Sci Rep. 2020;10:1794.
pubmed: 32020014
pmcid: 7000768
doi: 10.1038/s41598-020-58104-5
Bester AC, Lee JD, Chavez A, Lee YR, Nachmani D, Vora S, et al. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell. 2018;173:649–664.e20.
pubmed: 29677511
pmcid: 6061940
doi: 10.1016/j.cell.2018.03.052
Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, et al. Best practice standards for circular RNA research. Nat Methods. 2022;19:1208–20.
pubmed: 35618955
pmcid: 9759028
doi: 10.1038/s41592-022-01487-2
García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J. The emerging role of long non-coding RNAs and MicroRNAs in neurodegenerative diseases: a perspective of machine learning. Biomolecules. 2021;11:1132.
pubmed: 34439798
pmcid: 8391852
doi: 10.3390/biom11081132
Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des. 2012;80:787–809.
pubmed: 22974319
doi: 10.1111/cbdd.12052
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting non-coding RNA for Glioblastoma therapy: the challenge of overcomes the blood-brain barrier. Front Med Technol. 2021;3:678593.
pubmed: 35047931
pmcid: 8757885
doi: 10.3389/fmedt.2021.678593
Zhong J, Jiang L, Huang Z, Zhang H, Cheng C, Liu H, et al. The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav Immun. 2017;65:183–94.
pubmed: 28483659
doi: 10.1016/j.bbi.2017.05.001
Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, et al. LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol. 2017;54:7670–85.
pubmed: 27844279
doi: 10.1007/s12035-016-0246-z
Lu J, Xu F, Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 2020;260:118305.
pubmed: 32827544
doi: 10.1016/j.lfs.2020.118305
Mu M, Niu W, Zhang X, Hu S, Niu C. LncRNA BCYRN1 inhibits glioma tumorigenesis by competitively binding with miR-619-5p to regulate CUEDC2 expression and the PTEN/AKT/p21 pathway. Oncogene. 2020;39:6879–92.
pubmed: 32978519
pmcid: 7644463
doi: 10.1038/s41388-020-01466-x
Zhang X, Zhu XL, Ji BY, Cao X, Yu LJ, Zhang Y, et al. LncRNA-1810034E14Rik reduces microglia activation in experimental ischemic stroke. J Neuroinflammation. 2019;16:75.
pubmed: 30961627
pmcid: 6452518
doi: 10.1186/s12974-019-1464-x
Gao YF, Liu JY, Mao XY, He ZW, Zhu T, Wang ZB, et al. LncRNA FOXD1-AS1 acts as a potential oncogenic biomarker in glioma. CNS Neurosci Ther. 2020;26:66–75.
pubmed: 31102349
doi: 10.1111/cns.13152
Wang Y, Shan A, Zhou Z, Li W, Xie L, Du B, et al. LncRNA TCONS_00004099-derived microRNA regulates oncogenesis through PTPRF in gliomas. Ann Transl Med. 2021;9:1023.
pubmed: 34277823
pmcid: 8267291
doi: 10.21037/atm-21-2442
Li EY, Zhao PJ, Jian J, Yin BQ, Sun ZY, Xu CX, et al. LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF. Cell Cycle. 2019;18:156–66.
pubmed: 30563429
doi: 10.1080/15384101.2018.1560202
Matsukawa K, Kukharsky MS, Park SK, Park S, Watanabe N, Iwatsubo T, et al. Long non-coding RNA NEAT1_1 ameliorates TDP-43 toxicity in in vivo models of TDP-43 proteinopathy. RNA Biol. 2021;18:1546–54.
pubmed: 33427561
pmcid: 8583295
doi: 10.1080/15476286.2020.1860580
Zhang Y, Xia Q, Lin J. LncRNA H19 attenuates Apoptosis in MPTP-induced Parkinson’s disease through regulating miR-585-3p/PIK3R3. Neurochem Res. 2020;45:1700–10.
pubmed: 32356199
doi: 10.1007/s11064-020-03035-w
Feng X, Zhan F, Luo D, Hu J, Wei G, Hua F, et al. LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p. Brain Behav Immun. 2021;98:283–98.
pubmed: 34455059
doi: 10.1016/j.bbi.2021.08.230
Sun J, He D, Fu Y, Zhang R, Guo H, Wang Z, et al. A novel lncRNA ARST represses glioma progression by inhibiting ALDOA-mediated actin cytoskeleton integrity. J Exp Clin Cancer Res. 2021;40:187.
pubmed: 34099027
pmcid: 8183030
doi: 10.1186/s13046-021-01977-9
Xu H, Zhang B, Yang Y, Li Z, Zhao P, Wu W, et al. LncRNA MIR4435-2HG potentiates the proliferation and invasion of glioblastoma cells via modulating miR-1224-5p/TGFBR2 axis. J Cell Mol Med. 2020;24:6362–72.
pubmed: 32319715
pmcid: 7294147
doi: 10.1111/jcmm.15280
Yao P, Li YL, Chen Y, Shen W, Wu KY, Xu WH. Overexpression of long non-coding RNA Rian attenuates cell apoptosis from cerebral ischemia-reperfusion injury via Rian/miR-144-3p/GATA3 signaling. Gene. 2020;737:144411.
pubmed: 32006596
doi: 10.1016/j.gene.2020.144411