Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity.
Journal
International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108
Informations de publication
Date de publication:
25 Dec 2023
25 Dec 2023
Historique:
received:
25
08
2023
accepted:
01
12
2023
revised:
22
11
2023
medline:
26
12
2023
pubmed:
26
12
2023
entrez:
25
12
2023
Statut:
aheadofprint
Résumé
Obesity is becoming a worldwide pandemic with over one billion people affected. Of women in the United States, who are of childbearing age, two-thirds of them are considered overweight/obese. Offspring of women with obesity have a greater likelihood of developing cardiometabolic disease later in life, therefore making obesity a transgenerational issue. Emerging topics such as maternal microbial dysbiosis with altered levels of bacterial phyla and maternal obesity programming offspring cardiometabolic disease are a novel area of research discussed in this review. In the authors' opinion, beneficial therapeutics will be developed from knowledge of bacterial-host interactions at the most specific level possible. Although there is an abundance of obesity-related microbiome research, it is not concise, readily available, nor easy to interpret at this time. This review details the current knowledge regarding the relationship between obesity and the gut microbiome, with an emphasis on maternal obesity.
Identifiants
pubmed: 38145995
doi: 10.1038/s41366-023-01438-7
pii: 10.1038/s41366-023-01438-7
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s).
Références
Pi-Sunyer X. The medical risks of obesity. Postgrad Med. 2009;121:21–33.
pubmed: 19940414
pmcid: 2879283
doi: 10.3810/pgm.2009.11.2074
Apovian CM. The clinical and economic consequences of obesity. Am J Manag Care. 2013;19:s219–28.
pubmed: 24669378
Maruvada P, Leone V, Kaplan LM, Chang EB. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 2017;22:589–99.
pubmed: 29120742
doi: 10.1016/j.chom.2017.10.005
Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115:911–9.
pubmed: 15867843
doi: 10.1016/j.jaci.2005.02.023
Denison FC, Roberts KA, Barr SM, Norman JE. Obesity, pregnancy, inflammation, and vascular function. Reprod Camb Engl. 2010;140:373–85.
doi: 10.1530/REP-10-0074
Dozio E, Corsi MM, Ruscica M, Passafaro L, Steffani L, Banfi G, et al. Adipokine actions on cartilage homeostasis. Adv Clin Chem. 2011;55:62.
Bäckhed F. Programming of host metabolism by the gut microbiota. Ann Nutr Metab. 2011;58:44–52.
pubmed: 21846980
doi: 10.1159/000328042
Wu J, Wang K, Wang X, Pang Y, Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021;12:360–73.
pubmed: 33346905
doi: 10.1007/s13238-020-00814-7
Li Y. Epigenetic mechanisms link maternal diets and gut microbiome to obesity in the offspring. Front Genet. 2018;9:342.
pubmed: 30210530
pmcid: 6119695
doi: 10.3389/fgene.2018.00342
Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, Remacle C, et al. Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia. 2009;52:1133–42.
pubmed: 19288075
doi: 10.1007/s00125-009-1316-9
Gaillard R, Durmuş B, Hofman A, Mackenbach JP, Steegers EA, Jaddoe VW. Risk factors and outcomes of maternal obesity and excessive weight gain during pregnancy. Obesity. 2013;21:1046–55.
pubmed: 23784909
doi: 10.1002/oby.20088
Laraia BA, Bodnar LM, Siega-Riz AM. Pregravid body mass index is negatively associated with diet quality during pregnancy. Public Health Nutr. 2007;10:920–6.
pubmed: 17381955
doi: 10.1017/S1368980007657991
Hussen HI, Persson M, Moradi T. Maternal overweight and obesity are associated with increased risk of type 1 diabetes in offspring of parents without diabetes regardless of ethnicity. Diabetologia. 2015;58:1464–73.
pubmed: 25940642
doi: 10.1007/s00125-015-3580-1
Beckers KF, Sones JL. Maternal microbiome and the hypertensive disorder of pregnancy, preeclampsia. Am J Physiol Heart Circ Physiol. 2020;318:H1–10.
pubmed: 31626558
doi: 10.1152/ajpheart.00469.2019
Zhi C, Huang J, Wang J, Cao H, Bai Y, Guo J, et al. Connection between gut microbiome and the development of obesity. Eur J Clin Microbiol Infect Dis. 2019;38:1987–98.
pubmed: 31367997
doi: 10.1007/s10096-019-03623-x
Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host-bacterial symbiosis in health and disease. Adv in Immunol. 2010;107:243–74.
doi: 10.1016/B978-0-12-381300-8.00008-3
Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–5.
pubmed: 19498350
doi: 10.1038/oby.2009.167
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718–23.
pubmed: 15505215
pmcid: 524219
doi: 10.1073/pnas.0407076101
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.
pubmed: 17183312
doi: 10.1038/nature05414
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444:1022–3.
pubmed: 17183309
doi: 10.1038/4441022a
Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for firmicutes and bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol. 2008;47:367–73.
pubmed: 19146523
doi: 10.1111/j.1472-765X.2008.02408.x
Kalliomäki M, Carmen Collado M, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87:534–8.
pubmed: 18326589
doi: 10.1093/ajcn/87.3.534
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070–5.
pubmed: 16033867
pmcid: 1176910
doi: 10.1073/pnas.0504978102
Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58–65.
pubmed: 21543530
pmcid: 3127503
doi: 10.3945/ajcn.110.010132
Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, et al. A taxonomic signature of obesity in a large study of American adults. Sci Rep. 2018;8:9749.
pubmed: 29950689
pmcid: 6021409
doi: 10.1038/s41598-018-28126-1
Almonacid DE, Kraal L, Ossandon FJ, Budovskaya YV, Cardenas JP, Bik EM, et al. 16S rRNA gene sequencing and healthy reference ranges for 28 clinically relevant microbial taxa from the human gut microbiome. PLoS ONE. 2017;12:e0176555.
pubmed: 28467461
pmcid: 5414997
doi: 10.1371/journal.pone.0176555
Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88:894–9.
pubmed: 18842773
doi: 10.1093/ajcn/88.4.894
Puertollano E, Kolida S, Yaqoob P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Curr Opin Clin Nutr Metab Care. 2014;17:139–44.
pubmed: 24389673
doi: 10.1097/MCO.0000000000000025
Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567–90.
pubmed: 2181501
doi: 10.1152/physrev.1990.70.2.567
James SL, Muir JG, Curtis SL, Gibson PR. Dietary fibre: a roughage guide. Intern Med J. 2003;33:291–6.
pubmed: 12823674
doi: 10.1046/j.1445-5994.2003.00404.x
Martinez KB, Leone V, Chang EB. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes. 2017;8:130–42.
pubmed: 28059614
pmcid: 5390820
doi: 10.1080/19490976.2016.1270811
Wang J, Chen WD, Wang YD. The relationship between gut microbiota and inflammatory diseases: the role of macrophages. Front Microbiol. 2020;11. https://www.frontiersin.org/articles/10.3389/fmicb.2020.01065 .
Kvit KB, Kharchenko NV. Gut microbiota changes as a risk factor for obesity. Wiadomosci Lek Wars Pol 1960. 2017;70:231–5.
Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014;5:190.
pubmed: 24808896
pmcid: 4010744
doi: 10.3389/fmicb.2014.00190
Carmody RN, Gerber GK, Luevano JM Jr, Gatti DM, Somes L, Svenson KL, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.
pubmed: 25532804
doi: 10.1016/j.chom.2014.11.010
Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6.
pubmed: 22728514
doi: 10.1053/j.gastro.2012.06.031
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.
pubmed: 19043404
doi: 10.1038/nature07540
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.
pubmed: 20368178
pmcid: 2894525
doi: 10.1126/scitranslmed.3000322
Wang M, Karlsson C, Olsson C, Adlerberth I, Wold AE, Strachan DP, et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol. 2008;121:129–34.
pubmed: 18028995
doi: 10.1016/j.jaci.2007.09.011
Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut. 2004;53:1–4.
pubmed: 14684564
pmcid: 1773911
doi: 10.1136/gut.53.1.1
Larsen N, Vogensen FK, Van Den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5:e9085.
pubmed: 20140211
pmcid: 2816710
doi: 10.1371/journal.pone.0009085
Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455:1109–13.
pubmed: 18806780
pmcid: 2574766
doi: 10.1038/nature07336
Krych L, Hansen CH, Hansen AK, van den Berg FW, Nielsen DS. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PloS ONE. 2013;8:e62578.
pubmed: 23658749
pmcid: 3641060
doi: 10.1371/journal.pone.0062578
Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri M, Moreno LA, et al. Shifts in clostridia, Bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes. 2009;33:758–67.
doi: 10.1038/ijo.2008.260
Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA. 2009;106:2365–70.
pubmed: 19164560
pmcid: 2629490
doi: 10.1073/pnas.0812600106
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.
pubmed: 22972297
doi: 10.1038/nature11552
Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.
pubmed: 18407065
pmcid: 3687783
doi: 10.1016/j.chom.2008.02.015
Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, et al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PloS ONE. 2011;6:e20944.
pubmed: 21695273
pmcid: 3111466
doi: 10.1371/journal.pone.0020944
Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Nitert MD. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci Rep. 2017;7:2860.
pubmed: 28588199
pmcid: 5460277
doi: 10.1038/s41598-017-03066-4
Nieto-Vazquez I, Fernández-Veledo S, Krämer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;114:183–94.
pubmed: 18629684
doi: 10.1080/13813450802181047
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.
pubmed: 17456850
doi: 10.2337/db06-1491
Piya MK, Harte AL, McTernan PG. Metabolic endotoxaemia: is it more than just a gut feeling? Curr Opin Lipidol. 2013;24:78–85.
pubmed: 23298961
doi: 10.1097/MOL.0b013e32835b4431
Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016;73:737–55.
pubmed: 26542800
doi: 10.1007/s00018-015-2083-z
Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015;22:516–30.
pubmed: 26299453
pmcid: 4570502
doi: 10.1016/j.cmet.2015.07.007
Dobner J, Kaser S. Body mass index and the risk of infection-from underweight to obesity. Clin Microbiol Infect. 2018;24:24–8.
pubmed: 28232162
doi: 10.1016/j.cmi.2017.02.013
Plotkin BJ, Paulson D, Chelich A, Jurak D, Cole J, Kasimos J, et al. Immune responsiveness in a rat model for type II diabetes (Zucker rat, fa/fa): susceptibility to Candida albicans infection and leucocyte function. J Med Microbiol. 1996;44:277–83.
pubmed: 8606356
doi: 10.1099/00222615-44-4-277
Ekesbo R, Nilsson PM, Lindholm LH, Persson K, Wadström T. Combined seropositivity for H. pylori and C. pneumoniae is associated with age, obesity and social factors. J Cardiovasc Risk. 2000;7:191–5.
pubmed: 11006888
doi: 10.1177/204748730000700305
Lajunen T, Bloigu A, Paldanius M, Pouta A, Laitinen J, Ruokonen A, et al. The association of body mass index, waist and hip circumference, and waist–hip ratio with Chlamydia pneumoniae IgG antibodies and high-sensitive C-reactive protein at 31 years of age in Northern Finland Birth Cohort 1966. Int J Obes. 2011;35:1470–8.
doi: 10.1038/ijo.2011.21
Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357:912–6.
pubmed: 28860383
pmcid: 5702268
doi: 10.1126/science.aan0677
Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36.
pubmed: 26100928
doi: 10.1136/gutjnl-2014-308778
Gohir W, Ratcliffe EM, Sloboda DM. Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatr Res. 2015;77:196.
pubmed: 25314580
doi: 10.1038/pr.2014.169
Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS one. 2012;7:e47713.
pubmed: 23091640
pmcid: 3473013
doi: 10.1371/journal.pone.0047713
Harris K, Kassis A, Major G.Chou CJ. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012;2012:879151.
Zhang D, Huang Y, Ye D. Intestinal dysbiosis: an emerging cause of pregnancy complications? Med Hypotheses. 2015;84:223–6.
pubmed: 25613564
doi: 10.1016/j.mehy.2014.12.029
Triunfo S, Lanzone A. Impact of overweight and obesity on obstetric outcomes. J Endocrinol Invest. 2014;37:323–9.
pubmed: 24515300
doi: 10.1007/s40618-014-0058-9
Wallace JM, Horgan GW, Bhattacharya S. Placental weight and efficiency in relation to maternal body mass index and the risk of pregnancy complications in women delivering singleton babies. Placenta. 2012;33:611–8.
pubmed: 22695104
doi: 10.1016/j.placenta.2012.05.006
Priyadarshini M, Thomas A, Reisetter AC, Scholtens DM, Wolever TM, Josefson JL, et al. Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns. Transl Res. 2014;164:153–7.
pubmed: 24530607
pmcid: 4156825
doi: 10.1016/j.trsl.2014.01.012
Aye IL, Lager S, Ramirez VI, Gaccioli F, Dudley DJ, Jansson T, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90:129–1.
pubmed: 24759787
pmcid: 4094003
doi: 10.1095/biolreprod.113.116186
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–80.
pubmed: 22863002
pmcid: 3505857
doi: 10.1016/j.cell.2012.07.008
Aagaard K, Ganu R, Ma J, Racusin D, Arndt M, Riehle K, et al. 8: whole metagenomic shotgun sequencing reveals a vibrant placental microbiome harboring metabolic function. Am J Obstet Gynecol. 2013;208:S5.
doi: 10.1016/j.ajog.2012.10.182
Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159:187–93.
pubmed: 18281199
doi: 10.1016/j.resmic.2007.12.007
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237ra65.
pubmed: 24848255
pmcid: 4929217
Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11:e1001631.
pubmed: 23976878
pmcid: 3747981
doi: 10.1371/journal.pbio.1001631
Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5:48.
pubmed: 28454555
pmcid: 5410102
doi: 10.1186/s40168-017-0268-4
Yang J, Hou L, Wang J, Xiao L, Zhang J, Yin N, et al. Unfavourable intrauterine environment contributes to abnormal gut microbiome and metabolome in twins. Gut. 2022;71:2451–62.
pubmed: 35387876
doi: 10.1136/gutjnl-2021-326482
Li W, Tapiainen T, Brinkac L, Lorenzi HA, Moncera K, Tejesvi MV, et al. Vertical transmission of gut microbiome and antimicrobial resistance genes in infants exposed to antibiotics at birth. J Infect Dis. 2021;224:1236–46.
pubmed: 32239170
doi: 10.1093/infdis/jiaa155
Beigi RH, Yudin MH, Cosentino L, Meyn LA, Hillier SL. Cytokines, pregnancy, and bacterial vaginosis: comparison of levels of cervical cytokines in pregnant and nonpregnant women with bacterial vaginosis. J Infect Dis. 2007;196:1355–60.
pubmed: 17922400
doi: 10.1086/521628
Straka M. Pregnancy and periodontal tissues. Neuroendocrinol Lett. 2011;32:34.
pubmed: 21407157
Chen S, Li J, Ren S, Gao Y, Zhou Y, Xuan R. Expression and clinical significance of short-chain fatty acids in pregnancy complications. Front Cell Infect Microbiol. 2023;12:1071029.
pubmed: 36710961
pmcid: 9876977
doi: 10.3389/fcimb.2022.1071029
Li J, Wang L, Chen H, Yang Z, Chen S, Wang J, et al. The diagnostic potential of gut microbiota-derived short-chain fatty acids in preeclampsia. Front Pediatr. 2022;10:878924.
pubmed: 35722486
pmcid: 9203731
doi: 10.3389/fped.2022.878924
Patro B, Liber A, Zalewski B, Poston L, Szajewska H, Koletzko B. Maternal and paternal body mass index and offspring obesity: a systematic review. Ann Nutr Metab. 2013;63:32–41.
pubmed: 23887153
doi: 10.1159/000350313
Kristensen J, Vestergaard M, Wisborg K, Kesmodel U, Secher NJ. Pre-pregnancy weight and the risk of stillbirth and neonatal death. BJOG Int J Obstet Gynaecol. 2005;112:403–8.
doi: 10.1111/j.1471-0528.2005.00437.x
Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care. 2009;32:1076–80.
pubmed: 19460915
pmcid: 2681036
doi: 10.2337/dc08-2077
Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301:636–50.
pubmed: 19211471
doi: 10.1001/jama.2009.113
Gosalbes MJ, Llop S, Valles Y, Moya A, Ballester F, Francino MP. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43:198–211.
pubmed: 23331561
doi: 10.1111/cea.12063
Makino H, Kushiro A, Ishikawa E, Muylaert D, Kubota H, Sakai T, et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol. 2011;77:6788–93.
pubmed: 21821739
pmcid: 3187114
doi: 10.1128/AEM.05346-11
Mühlhäusler BS, Adam CL, McMillen IC. Maternal nutrition and the programming of obesity: the brain. Organogenesis. 2008;4:144–52.
pubmed: 19279726
pmcid: 2634588
doi: 10.4161/org.4.3.6503
Parlee SD, MacDougald OA. Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. Biochim Biophys Acta BBA Mol Basis Dis. 2014;1842:495–506.
doi: 10.1016/j.bbadis.2013.07.007
Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS ONE. 2013;8:e78331.
pubmed: 24244304
pmcid: 3828338
doi: 10.1371/journal.pone.0078331
Ma J, Prince AL, Bader D, Hu M, Ganu R, Baquero K, et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun. 2014;5:1–11.
doi: 10.1038/ncomms4889
Payne AN, Chassard C, Zimmermann M, Müller P, Stinca S, Lacroix C. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr Diabetes. 2011;1:e12.
pubmed: 23154580
pmcid: 3302137
doi: 10.1038/nutd.2011.8
Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5:1–10.
doi: 10.1186/1757-4749-5-10
Uberos J, Molina-Carballo A, Fernandez-Puentes V, Rodriguez-Belmonte R, Munoz-Hoyos A. Overweight and obesity as risk factors for the asymptomatic carrier state of Neisseria meningitidis among a paediatric population. Eur J Clin Microbiol Infect Dis. 2010;29:333–4.
pubmed: 20063028
doi: 10.1007/s10096-009-0849-7
Lindsay KL, Walsh CA, Brennan L, McAuliffe FM. Probiotics in pregnancy and maternal outcomes: a systematic review. J Matern Fetal Neonatal Med. 2013;26:772–8.
pubmed: 23205866
doi: 10.3109/14767058.2012.755166
Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2:119–29.
pubmed: 18005726
doi: 10.1016/j.chom.2007.06.010
Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, et al. TNF-α is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51:2207–13.
pubmed: 12086951
doi: 10.2337/diabetes.51.7.2207
Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.
pubmed: 21219177
doi: 10.1146/annurev-immunol-031210-101322
Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD—what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol. 2012;9:219–30.
pubmed: 22349170
doi: 10.1038/nrgastro.2012.14
Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol. 2000;68:437–46.
pubmed: 11037963
doi: 10.1189/jlb.68.4.437
Zarkesh-Esfahani H, Pockley AG, Wu Z, Hellewell PG, Weetman AP, Ross RJ. Leptin indirectly activates human neutrophils via induction of TNF-α. J Immunol. 2004;172:1809–14.
pubmed: 14734764
doi: 10.4049/jimmunol.172.3.1809
Faggioni R, Feingold KR, Grunfeld C. Leptin regulation of the immune response and the immunodeficiency of malnutrition 1. FASEB J. 2001;15:2565–71.
pubmed: 11726531
doi: 10.1096/fj.01-0431rev
Ikejima S, Sasaki S, Sashinami H, Mori F, Ogawa Y, Nakamura T, et al. Impairment of host resistance to Listeria monocytogenes infection in liver of db/db and ob/ob mice. Diabetes. 2005;54:182–9.
pubmed: 15616027
doi: 10.2337/diabetes.54.1.182
Mancuso P, Gottschalk A, Phare SM, Peters-Golden M, Lukacs NW, Huffnagle GB. Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia. J Immunol. 2002;168:4018–24.
pubmed: 11937559
doi: 10.4049/jimmunol.168.8.4018
Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147:1363–77.
pubmed: 25172014
doi: 10.1053/j.gastro.2014.08.033
Dijkstra DJ, Verkaik-Schakel RN, Eskandar S, Limonciel A, Stojanovska V, Scherjon SA, et al. Mid-gestation low-dose LPS administration results in female-specific excessive weight gain upon a western style diet in mouse offspring. Sci Rep. 2020;10:19618.
pubmed: 33184349
pmcid: 7665071
doi: 10.1038/s41598-020-76501-8
Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology. 2001;204:572–81.
pubmed: 11846220
doi: 10.1078/0171-2985-00094
Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007;119:e724–32.
pubmed: 17332189
doi: 10.1542/peds.2006-1649
Donnet-Hughes A, Perez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc. 2010;69:407–15.
pubmed: 20633308
doi: 10.1017/S0029665110001898
Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29:274–81.
pubmed: 18262644
pmcid: 4284075
doi: 10.1016/j.placenta.2007.12.010
Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104:83–92.
pubmed: 20205964
doi: 10.1017/S0007114510000176
Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M, et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes. 2016;65:2214–23.
pubmed: 27217482
doi: 10.2337/db16-0278
Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M, Campoy C, et al. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity. 2009;17:1906–15.
pubmed: 19390523
doi: 10.1038/oby.2009.112
Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12:496–508.
pubmed: 23084918
pmcid: 3516493
doi: 10.1016/j.chom.2012.09.009
Cano PG, Santacruz A, Trejo FM, Sanz Y. Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity. 2013;21:2310–21.
pubmed: 23418126
doi: 10.1002/oby.20330
Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.
pubmed: 23671105
pmcid: 3670398
doi: 10.1073/pnas.1219451110
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5.
pubmed: 18509436
doi: 10.1038/nature07008
Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012;53:100–8.
pubmed: 22634320
doi: 10.1016/j.micpath.2012.05.007
Sotos M, Nadal I, Marti A, Martínez A, Martin-Matillas M, Campoy C, et al. Gut microbes and obesity in adolescents. Proc Nutr Soc. 2008;67.
Smid MC, Ricks NM, Panzer A, Mccoy AN, Azcarate-Peril MA, Keku TO, et al. Maternal gut microbiome biodiversity in pregnancy. Am J Perinatol. 2018;35:024–30.
doi: 10.1055/s-0037-1604412
Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr. 2010;103:335–8.
pubmed: 19849869
doi: 10.1017/S0007114509992182
Baradaran A, Dehghanbanadaki H, Naderpour S, Pirkashani LM, Rajabi A, Rashti R, et al. The association between Helicobacter pylori and obesity: a systematic review and meta-analysis of case–control studies. Clin Diabetes Endocrinol. 2021;7:1–11.
doi: 10.1186/s40842-021-00131-w
Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front Microbiol. 2020;11:219.
pubmed: 32153527
pmcid: 7046546
doi: 10.3389/fmicb.2020.00219
Karlsson CL, Molin G, Fåk F, Hagslätt MLJ, Jakesevic M, Håkansson Å, et al. Effects on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age. Br J Nutr. 2011;106:887–95.
pubmed: 21450114
doi: 10.1017/S0007114511001036