Cytotoxic lesions of the corpus callosum: a systematic review.
COVID-19
Central nervous system diseases
Corpus callosum
Magnetic resonance imaging
Systematic review
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
26 Dec 2023
26 Dec 2023
Historique:
received:
12
07
2023
accepted:
25
11
2023
revised:
07
11
2023
medline:
26
12
2023
pubmed:
26
12
2023
entrez:
26
12
2023
Statut:
aheadofprint
Résumé
Cytotoxic lesions of the corpus callosum (CLOCC) are a common magnetic resonance imaging (MRI) finding associated with various systemic diseases including COVID-19. Although an increasing number of such cases is reported in the literature, there is a lack of systematic evidence summarizing the etiology and neuroimaging findings of these lesions. Thus, the aim of this systematic review was to synthesize the applied nomenclature, neuroimaging and clinical features, and differential diagnoses as well as associated disease entities of CLOCC. A comprehensive literature search in three biomedical databases identified 441 references, out of which 324 were eligible for a narrative summary including a total of 1353 patients. Our PRISMA-conform systematic review identifies a broad panel of disease entities which are associated with CLOCC, among them toxic/drug-treatment-associated, infectious (viral, bacterial), vascular, metabolic, traumatic, and neoplastic entities in both adult and pediatric individuals. On MRI, CLOCC show typical high T2 signal, low T1 signal, restricted diffusion, and lack of contrast enhancement. The majority of the lesions were reversible within the follow-up period (median follow-up 3 weeks). Interestingly, even though CLOCC were mostly associated with symptoms of the underlying disease, in exceptional cases, CLOCC were associated with callosal neurological symptoms. Of note, employed nomenclature for CLOCC was highly inconsistent. Our study provides high-level evidence for clinical and imaging features of CLOCC as well as associated disease entities. Our study provides high-level evidence on MRI features of CLOCC as well as a comprehensive list of disease entities potentially associated with CLOCC. Together, this will facilitate rigorous diagnostic workup of suspected CLOCC cases. • Cytotoxic lesions of the corpus callosum (CLOCC) are a frequent MRI feature associated with various systemic diseases. • Cytotoxic lesions of the corpus callosum show a highly homogenous MRI presentation and temporal dynamics. • This comprehensive overview will benefit (neuro)radiologists during diagnostic workup.
Identifiants
pubmed: 38147170
doi: 10.1007/s00330-023-10524-3
pii: 10.1007/s00330-023-10524-3
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : P400PM_183884
Informations de copyright
© 2023. The Author(s).
Références
Blaauw J, Meiners LC (2020) The splenium of the corpus callosum: embryology, anatomy, function and imaging with pathophysiological hypothesis. Neuroradiology 62:563–585
doi: 10.1007/s00234-019-02357-z
pubmed: 32062761
pmcid: 7186255
Rolshoven J, Fellows K, Ania R, Tabaac BJ (2021) Vertigo and cytotoxic lesions of the corpus callosum: report with review of the literature. Case Rep Neurol Med 18:5573822
Starkey J, Kobayashi N, Numaguchi Y, Moritani T (2017) Cytotoxic lesions of the corpus callosum that show restricted diffusion: mechanisms, causes, and manifestations. Radiographics 37:562–576
doi: 10.1148/rg.2017160085
pubmed: 28165876
Tetsuka S (2019) Reversible lesion in the splenium of the corpus callosum. Brain Behav 9:e01440
doi: 10.1002/brb3.1440
pubmed: 31588684
pmcid: 6851813
Kontzialis M, Soares BP, Huisman T (2017) Lesions in the splenium of the corpus callosum on MRI in children: a review. J Neuroimaging 27:549–561
doi: 10.1111/jon.12455
pubmed: 28654166
Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1
doi: 10.1186/2046-4053-4-1
pubmed: 25554246
pmcid: 4320440
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210
doi: 10.1186/s13643-016-0384-4
pubmed: 27919275
pmcid: 5139140
Wells GA, Tugwell P, O’Connell D et al (2015) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses
Tsuji M, Chong PF, Yamashita F, Maeda K, Kira R (2019) Cytotoxic lesion of the corpus callosum exclusively at the genu in a case of callosal hypogenesis. J Neuroradiol 46:222–223
doi: 10.1016/j.neurad.2018.11.001
pubmed: 30500357
Galnares-Olalde J, Vázquez-Mézquita A, Gómez-Garza G et al (2019) Cytotoxic lesions of the corpus callosum caused by thermogenic dietary supplements. AJNR Am J Neuroradiol 40:1304–1308
doi: 10.3174/ajnr.A6116
pubmed: 31272963
pmcid: 7048490
Ueda F, Yoshie Y, Aburano H, Hashimoto M, Matsui O, Gabata T (2014) Splenial and white matter lesions showing transiently-reduced diffusion in mild encephalopathy monitored with MR spectroscopy and imaging. Magn Reson Med Sci 13:271–275
doi: 10.2463/mrms.2014-0011
pubmed: 25345410
Gellman SR, Ng Y-T (2018) Transient corpus callosal lesion presenting with alien hand syndrome. Pediatr Neurol 89:66–67
doi: 10.1016/j.pediatrneurol.2018.08.014
pubmed: 30389110
Cho J-S, Ha S-W, Han Y-S et al (2007) Mild encephalopathy with reversible lesion in the splenium of the corpus callosum and bilateral frontal white matter. J Clin Neurol 3:53–56
doi: 10.3988/jcn.2007.3.1.53
pubmed: 19513344
pmcid: 2686937
Garcia-Monco JC, Cortina IE, Ferreira E et al (2011) Reversible splenial lesion syndrome (RESLES): what’s in a name? J Neuroimaging 21:e1-14
doi: 10.1111/j.1552-6569.2008.00279.x
pubmed: 18681931
Moreau A, Ego A, Vandergheynst F et al (2021) Cytotoxic lesions of the corpus callosum (CLOCCs) associated with SARS-CoV-2 infection. J Neurol 268:1592–1594
doi: 10.1007/s00415-020-10164-3
pubmed: 32809154
Guo K, Lai X, Liu Y, Zhou D, Hong Z (2021) Anti-glial fibrillary acidic protein antibodies as a cause of reversible splenial lesion syndrome (RESLES): a case report. Neurol Sci 42:3903–3907
doi: 10.1007/s10072-021-05376-y
pubmed: 34089418
pmcid: 8179072
Toi H, Yagi K, Matsubara S, Hara K, Uno M (2021) Clinical features of cytotoxic lesions of the corpus callosum associated with aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol 42:1046–1051
doi: 10.3174/ajnr.A7055
pubmed: 33664118
pmcid: 8191652
Chen W-X, Liu H-S, Yang S-D et al (2016) Reversible splenial lesion syndrome in children: retrospective study and summary of case series. Brain Develop 38:915–927
doi: 10.1016/j.braindev.2016.04.011
Azuma J, Nabatame S, Katsura T et al (2016) Marked elevation of urinary β2-microglobulin in patients with reversible splenial lesions: a small case series. J Neurol Sci 368:109–112
doi: 10.1016/j.jns.2016.06.066
pubmed: 27538611
Kallenberg K, Bailey DM, Christ S et al (2007) Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab 27:1064–1071
doi: 10.1038/sj.jcbfm.9600404
pubmed: 17024110
Takayama H, Kobayashi M, Sugishita M, Mihara B (2000) Diffusion-weighted imaging demonstrates transient cytotoxic edema involving the corpus callosum in a patient with diffuse brain injury. Clin Neurol Neurosurg 102:135–139
doi: 10.1016/S0303-8467(00)00079-2
pubmed: 10996710
Prilipko O, Delavelle J, Lazeyras F, Seeck M (2005) Reversible cytotoxic edema in the splenium of the corpus callosum related to antiepileptic treatment: report of two cases and literature review. Epilepsia 46:1633–1636
doi: 10.1111/j.1528-1167.2005.00256.x
pubmed: 16190935
Choi DW (2020) Excitotoxicity: still hammering the ischemic brain in 2020. Front Neurosci 14:579953
doi: 10.3389/fnins.2020.579953
pubmed: 33192266
pmcid: 7649323
Rho JM, Boison D (2022) The metabolic basis of epilepsy. Nat Rev Neurol 18:333–347
doi: 10.1038/s41582-022-00651-8
pubmed: 35361967
pmcid: 10259193
Rasmussen C, Niculescu I, Patel S, Krishnan A (2020) COVID-19 and involvement of the corpus callosum: potential effect of the cytokine storm? AJNR Am J Neuroradiol 41:1625–1628
pubmed: 32732269
pmcid: 7583114
Moritani T, Smoker WR, Sato Y, Numaguchi Y, Westesson P-LA (2005) Diffusion-weighted imaging of acute excitotoxic brain injury. AJNR Am J Neuroradiol 26:216–228
pubmed: 15709116
pmcid: 7974100
Ma D, Matute C (1999) Expression of glutamate transporters in the adult bovine corpus callosum. Mol Brain Res 67:296–302
doi: 10.1016/S0169-328X(99)00072-8
Henning A (2018) Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: a review. Neuroimage 168:181–198
doi: 10.1016/j.neuroimage.2017.07.017
pubmed: 28712992
Weiger M, Pruessmann KP (2019) Short-T(2) MRI: principles and recent advances. Prog Nucl Magn Reson Spectrosc 114–115:237–270
doi: 10.1016/j.pnmrs.2019.07.001
pubmed: 31779882
Weiger M, Froidevaux R, Baadsvik EL, Brunner DO, Rösler MB, Pruessmann KP (2020) Advances in MRI of the myelin bilayer. Neuroimage 217:116888
doi: 10.1016/j.neuroimage.2020.116888
pubmed: 32360688
Baadsvik EL, Weiger M, Froidevaux R, Faigle W, Ineichen BV, Pruessmann KP (2022) Mapping the myelin bilayer with short‐T2 MRI: methods validation and reference data for healthy human brain. Magn Reson Med
Hassan A, Josephs KA (2016) Alien hand syndrome. Curr Neurol Neurosci Rep 16:1–10
doi: 10.1007/s11910-016-0676-z
Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841
doi: 10.1148/radiol.13131669
pubmed: 24475844
Garg N, Reddel SW, Miller DH et al (2015) The corpus callosum in the diagnosis of multiple sclerosis and other CNS demyelinating and inflammatory diseases. J Neurol Neurosurg Psychiatry 86:1374–1382
pubmed: 25857658
Uchino A, Takase Y, Nomiyama K, Egashira R, Kudo S (2006) Acquired lesions of the corpus callosum: MR imaging. Eur Radiol 16:905–914
doi: 10.1007/s00330-005-0037-9
pubmed: 16284771
Ineichen BV, Beck ES, Piccirelli M, Reich DS (2021) New prospects for ultra-high-field magnetic resonance imaging in multiple sclerosis. Invest Radiol. https://doi.org/10.1097/rli.0000000000000804
doi: 10.1097/rli.0000000000000804
pubmed: 34120128
pmcid: 8505164
Geibprasert S, Gallucci M, Krings T (2010) Alcohol-induced changes in the brain as assessed by MRI and CT. Eur Radiol 20:1492–1501
doi: 10.1007/s00330-009-1668-z
pubmed: 19997850
Lu P-l, Hodes JF, Zheng X, Hu X-y (2020) Reversible splenial lesion syndrome with some novel causes and clinical manifestations. Intern Med 59:2471–2480
doi: 10.2169/internalmedicine.4516-20
pubmed: 32611957
pmcid: 7662037
Tao J-j, Zhang W-j, Wang D et al (2015) Susceptibility weighted imaging in the evaluation of hemorrhagic diffuse axonal injury. Neural Regen Res 10:1879
doi: 10.4103/1673-5374.170322
pubmed: 26807130
pmcid: 4705807
Grabner G, Kiesel B, Wöhrer A et al (2017) Local image variance of 7 Tesla SWI is a new technique for preoperative characterization of diffusely infiltrating gliomas: correlation with tumour grade and IDH1 mutational status. Eur Radiol 27:1556–1567
doi: 10.1007/s00330-016-4451-y
pubmed: 27300198