Guanxin V alleviates ventricular remodeling after acute myocardial infarction with circadian disruption by regulating mitochondrial dynamics.
Acute myocardial infarction
Circadian disruption
Guanxin V
Mitochondrial dynamics
Ventricular remodeling
Journal
Sleep & breathing = Schlaf & Atmung
ISSN: 1522-1709
Titre abrégé: Sleep Breath
Pays: Germany
ID NLM: 9804161
Informations de publication
Date de publication:
26 Dec 2023
26 Dec 2023
Historique:
received:
31
05
2023
accepted:
06
12
2023
revised:
24
11
2023
medline:
26
12
2023
pubmed:
26
12
2023
entrez:
26
12
2023
Statut:
aheadofprint
Résumé
Circadian disruption has been a common issue due to modern lifestyles. Ventricular remodeling (VR) is a pivotal progressive pathologic change after acute myocardial infarction (AMI) and circadian disruption may have a negative influence on VR according to the latest research. Whether or not Guanxin V (GXV) has a positive effect on VR after AMI with circadian disruption drew our interest. Rats were randomly divided into a sham group, an AMI group, an AMI with circadian disruption group, and an AMI with circadian disruption treated with the GXV group according to a random number table. RNA sequencing (RNA-Seq) was utilized to confirm the different expressed genes regulated by circadian disruption. Cardiac function, inflammation factors, pathological evaluation, and mitochondrial dynamics after the intervention were conducted to reveal the mechanism by which GXV regulated VR after AMI with circadian disruption. RNA-Seq demonstrated that NF-κB was up-regulated by circadian disruption in rats with AMI. Functional and pathological evaluation indicated that compared with the AMI group, circadian disruption was associcataed with deteriorated cardiac function, expanded infarcted size, and exacerbated fibrosis and cardiomyocyte apoptosis. Further investigation demonstrated that mitochondrial dynamics imbalance was induced by circadian disruption. GXV intervention reversed the inflammatory status including down-regulation of NF-κB. Reserved cardiac function, limited infarct size, and ameliorated fibrosis and apoptosis were also observed in the GXV treated group. GXV maintained mitochondrial fission/fusion imbalance through suppressed expression of mitochondrial fission-associated proteins. The study findings suggest that identified mitochondrial dysfunctions may underlie the link between circadian disruption and VR. GXV may exert cardioprotection after AMI with circadian disruption through regulating mitochondrial dynamics.
Identifiants
pubmed: 38147288
doi: 10.1007/s11325-023-02974-2
pii: 10.1007/s11325-023-02974-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Jiangsu Universities Nursing Advantage Discipline Project
ID : 2019YSHL100
Organisme : Nanjing Young Talents Project of Traditional Chinese Medicine
ID : ZYQ20025
Organisme : Nanjing Young Talents Project of Traditional Chinese Medicine
ID : ZYQN202204
Organisme : National Natural Science Foundation of China
ID : 82004239
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Figueiro MG, Pedler D (2023) Cardiovascular disease and lifestyle choices: spotlight on circadian rhythms and sleep. Prog Cardiovasc Dis. https://doi.org/10.1016/j.pcad.2023.02.004
doi: 10.1016/j.pcad.2023.02.004
pubmed: 36841493
Alibhai FJ, Tsimakouridze EV, Chinnappareddy N, Wright DC, Billia F, O’Sullivan ML, Pyle WG, Sole MJ, Martino TA (2014) Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res 114(11):1713–1722. https://doi.org/10.1161/circresaha.114.302995
doi: 10.1161/circresaha.114.302995
pubmed: 24687134
Wang Y, Jiang W, Chen H, Zhou H, Liu Z, Liu Z, Liu Z, Zhou Y, Zhou X, Yu L, Jiang H (2021) Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model. Front Cardiovasc Med 8:668387. https://doi.org/10.3389/fcvm.2021.668387
doi: 10.3389/fcvm.2021.668387
pubmed: 33842566
pmcid: 8032890
Zhao Y, Lu X, Wan F, Gao L, Lin N, He J, Wei L, Dong J, Qin Z, Zhong F, Qiao Z, Wang W, Ge H, Ding S, Yang Y, Xiu J, Shan P, Yan F, Zhao S, Ji Y, Pu J (2022) Disruption of circadian rhythms by shift work exacerbates reperfusion injury in myocardial infarction. J Am Coll Cardiol 79(21):2097–2115. https://doi.org/10.1016/j.jacc.2022.03.370
doi: 10.1016/j.jacc.2022.03.370
pubmed: 35618347
pmcid: 8972444
Wang J, Deng B, Liu J, Liu Q, Guo Y, Yang Z, Fang C, Lu L, Chen Z, Xian S, Wang L, Huang Y (2021) Xinyang Tablet inhibits MLK3-mediated pyroptosis to attenuate inflammation and cardiac dysfunction in pressure overload. J Ethnopharmacol 274:114078. https://doi.org/10.1016/j.jep.2021.114078
doi: 10.1016/j.jep.2021.114078
pubmed: 33798659
Lian Y, Zhu M, Yang B, Wang X, Zeng J, Yang Y, Guo S, Jia X, Feng L (2022) Characterization of a novel polysaccharide from red ginseng and its ameliorative effect on oxidative stress injury in myocardial ischemia. Chin Med 17(1):111. https://doi.org/10.1186/s13020-022-00669-6
doi: 10.1186/s13020-022-00669-6
pubmed: 36153627
pmcid: 9509600
Chen X, Wang Q, Shao M, Ma L, Guo D, Wu Y, Gao P, Wang X, Li W, Li C, Wang Y (2019) Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed Pharmacother 120:109487. https://doi.org/10.1016/j.biopha.2019.109487
doi: 10.1016/j.biopha.2019.109487
pubmed: 31577975
Liang B, Zhang XX, Gu N (2020) Virtual screening and network pharmacology-based synergistic mechanism identification of multiple components contained in Guanxin V against coronary artery disease. BMC Complement Med Ther 20(1):345. https://doi.org/10.1186/s12906-020-03133-w
doi: 10.1186/s12906-020-03133-w
pubmed: 33187508
pmcid: 7664106
Zhang X, Shao C, Cheng S, Zhu Y, Liang B, Gu N (2021) Effect of Guanxin V in animal model of acute myocardial infarction. BMC Complement Med Ther 21(1):72. https://doi.org/10.1186/s12906-021-03211-7
doi: 10.1186/s12906-021-03211-7
pubmed: 33618704
pmcid: 7898759
Liang B, Zhang XX, Li R, Gu N (2022) Guanxin V protects against ventricular remodeling after acute myocardial infarction through the interaction of TGF-β1 and Vimentin. Phytomedicine 95:153866. https://doi.org/10.1016/j.phymed.2021.153866
doi: 10.1016/j.phymed.2021.153866
pubmed: 34883417
Liang B, Qu Y, Zhao QF, Gu N (2020) Guanxin V for coronary artery disease: a retrospective study. Biomed Pharmacother 128:110280. https://doi.org/10.1016/j.biopha.2020.110280
doi: 10.1016/j.biopha.2020.110280
pubmed: 32485568
Yi X, Yan Y, Li L, Zhou R, Shen X, Huang Y (2022) Combination of mitochondria impairment and inflammation blockade to combat metastasis. J Control Release 341:753–768. https://doi.org/10.1016/j.jconrel.2021.12.015
doi: 10.1016/j.jconrel.2021.12.015
pubmed: 34915072
Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252. https://doi.org/10.1016/j.cell.2006.06.010
doi: 10.1016/j.cell.2006.06.010
pubmed: 16814712
Su L, Zhang J, Gomez H, Kellum JA, Peng Z (2022) Mitochondria ROS and mitophagy in acute kidney injury. Autophagy:1–14. https://doi.org/10.1080/15548627.2022.2084862
Daugaard S, Markvart J, Bonde JP, Christoffersen J, Garde AH, Hansen ÅM, Schlünssen V, Vestergaard JM, Vistisen HT, Kolstad HA (2019) Light exposure during days with night, outdoor, and indoor work. Ann Work Expo Health 63(6):651–665. https://doi.org/10.1093/annweh/wxy110
doi: 10.1093/annweh/wxy110
pubmed: 30865270
Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C (2013) Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res 252:1–9. https://doi.org/10.1016/j.bbr.2013.05.028
doi: 10.1016/j.bbr.2013.05.028
pubmed: 23714074
Baron KG, Reid KJ (2014) Circadian misalignment and health. Int Rev Psychiatry 26(2):139–154. https://doi.org/10.3109/09540261.2014.911149
doi: 10.3109/09540261.2014.911149
pubmed: 24892891
pmcid: 4677771
Lane JM, Qian J, Mignot E, Redline S, Scheer F, Saxena R (2022) Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet. https://doi.org/10.1038/s41576-022-00519-z
doi: 10.1038/s41576-022-00519-z
pubmed: 36028773
Swirski FK, McAlpine CS (2022) Circadian cadence and NR1D1 tune cardiovascular disease. J Am Coll Cardiol 79(21):2116–2118. https://doi.org/10.1016/j.jacc.2022.03.364
doi: 10.1016/j.jacc.2022.03.364
pubmed: 35618348
Xiao F, Wang L, Liu M, Chen M, He H, Jia Z, Zhang L, Yang Y, Hu Q, Hong M, Zhang H (2022) Sacubitril/valsartan attenuates myocardial ischemia/reperfusion injury via inhibition of the GSK3β/NF-κB pathway in cardiomyocytes. Arch Biochem Biophys 730:109415. https://doi.org/10.1016/j.abb.2022.109415
doi: 10.1016/j.abb.2022.109415
pubmed: 36179911
Shervin Prince S, Stanely Mainzen Prince P, Berlin Grace VM (2022) Valencene post-treatment exhibits cardioprotection via inhibiting cardiac hypertrophy, oxidative stress, nuclear factor- κB inflammatory pathway, and myocardial infarct size in isoproterenol-induced myocardial infarcted rats; a molecular study. Eur J Pharmacol 927:174975. https://doi.org/10.1016/j.ejphar.2022.174975
doi: 10.1016/j.ejphar.2022.174975
pubmed: 35469837
Bozi LHM, Campos JC, Zambelli VO, Ferreira ND, Ferreira JCB (2020) Mitochondrially-targeted treatment strategies. Mol Aspects Med 71:100836. https://doi.org/10.1016/j.mam.2019.100836
doi: 10.1016/j.mam.2019.100836
pubmed: 31866004
Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schröder E, Wait R, Begum S, Kentish JC, Eaton P (2006) Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281(31):21827–21836. https://doi.org/10.1074/jbc.M603952200
doi: 10.1074/jbc.M603952200
pubmed: 16754666
Kiyuna LA, Albuquerque RPE, Chen CH, Mochly-Rosen D, Ferreira JCB (2018) Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities. Free Radic Biol Med 129:155–168. https://doi.org/10.1016/j.freeradbiomed.2018.09.019
doi: 10.1016/j.freeradbiomed.2018.09.019
pubmed: 30227272
pmcid: 6309415
Chen L, Gong Q, Stice JP, Knowlton AA (2009) Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84(1):91–99. https://doi.org/10.1093/cvr/cvp181
doi: 10.1093/cvr/cvp181
pubmed: 19493956
pmcid: 2741347
Ryan JJ, Archer SL (2015) Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation 131(19):1691–1702. https://doi.org/10.1161/circulationaha.114.006979
doi: 10.1161/circulationaha.114.006979
pubmed: 25964279
pmcid: 4429908
Abudupataer M, Zhu S, Yan S, Xu K, Zhang J, Luo S, Ma W, Alam MF, Tang Y, Huang H, Chen N, Wang L, Yan G, Li J, Lai H, Wang C, Zhu K, Zhang W (2021) Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease. Elife 10. https://doi.org/10.7554/eLife.69310
Battaglia CR, Cursano S, Calzia E, Catanese A, Boeckers TM (2020) Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. Cell Death Dis 11(11):1004. https://doi.org/10.1038/s41419-020-03204-3
doi: 10.1038/s41419-020-03204-3
pubmed: 33230105
pmcid: 7683554
Jiao L, Wang Y, Zhang S, Wang Y, Liu Z, Liu Z, Zhou Y, Zhou H, Xu X, Li Z, Liu Z, Yu Z, Nie L, Zhou L, Jiang H (2022) Melatonin improves cardiac remodeling and brain-heart sympathetic hyperactivation aggravated by light disruption after myocardial infarction. J Pineal Res 73(4):e12829. https://doi.org/10.1111/jpi.12829
doi: 10.1111/jpi.12829
pubmed: 36031757
Cardinali DP (1981) Melatonin.l A mammalian pineal hormone. Endocr Rev 2(3):327–346. https://doi.org/10.1210/edrv-2-3-327
doi: 10.1210/edrv-2-3-327
pubmed: 6268398
Auld F, Maschauer EL, Morrison I, Skene DJ, Riha RL (2017) Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med Rev 34:10–22. https://doi.org/10.1016/j.smrv.2016.06.005
doi: 10.1016/j.smrv.2016.06.005
pubmed: 28648359
Kuehn BM (2022) Climbing melatonin use for insomnia raises safety concerns. JAMA 328(7):605–607. https://doi.org/10.1001/jama.2022.11506
doi: 10.1001/jama.2022.11506
pubmed: 35895042
Cardinali DP, Brown GM, Pandi-Perumal SR (2022) Melatonin’s benefits and risks as a therapy for sleep disturbances in the elderly: current insights. Nat Sci Sleep 14:1843–1855. https://doi.org/10.2147/nss.S380465
doi: 10.2147/nss.S380465
pubmed: 36267165
pmcid: 9578490
Harding BN, Castaño-Vinyals G, Palomar-Cros A, Papantoniou K, Espinosa A, Skene DJ, Middleton B, Gomez-Gomez A, Navarrete JM, Such P, Torrejón A, Kogevinas M, Pozo OJ (2022) Changes in melatonin and sex steroid hormone production among men as a result of rotating night shift work - the HORMONIT study. Scand J Work Environ Health 48(1):41–51. https://doi.org/10.5271/sjweh.3991
doi: 10.5271/sjweh.3991
pubmed: 34623452
Mazumder S, De R, Debsharma S, Bindu S, Maity P, Sarkar S, Saha SJ, Siddiqui AA, Banerjee C, Nag S, Saha D, Pramanik S, Mitra K, Bandyopadhyay U (2019) Indomethacin impairs mitochondrial dynamics by activating the PKCζ-p38-DRP1 pathway and inducing apoptosis in gastric cancer and normal mucosal cells. J Biol Chem 294(20):8238–8258. https://doi.org/10.1074/jbc.RA118.004415
doi: 10.1074/jbc.RA118.004415
pubmed: 30940726
pmcid: 6527165
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA (2021) From mitochondria to atherosclerosis: the inflammation path. Biomedicines 9 (3). https://doi.org/10.3390/biomedicines9030258