Insights into Endophytic and Rhizospheric Bacteria of Five Sugar Beet Hybrids in Terms of Their Diversity, Plant-Growth Promoting, and Biocontrol Properties.
Biotic and abiotic stresses
Cercospora-resistant hybrid
Keystone species
Plant-associated bacteria
Sugar beet hybrids
Journal
Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663
Informations de publication
Date de publication:
27 Dec 2023
27 Dec 2023
Historique:
received:
22
08
2023
accepted:
05
12
2023
medline:
27
12
2023
pubmed:
27
12
2023
entrez:
26
12
2023
Statut:
epublish
Résumé
Sugar beet is the most important crop for sugar production in temperate zones. The plant microbiome is considered an important factor in crop productivity and health. Here, we investigated the bacterial diversity of seeds, roots, and rhizosphere of five sugar beet hybrids named Eduarda (ED), Koala (KO), Tibor (T), Tajfun (TF), and Cercospora-resistant (C). A culture-independent next-generation sequencing approach was used for the further investigation of seed-borne endophytes. Hybrid-associated bacteria were evaluated for their plant growth-promoting (PGP) characteristics, antagonistic activity towards Cercospora beticola and several Fusarium strains in dual culture assays, and drought and salinity tolerance. High-throughput sequencing revealed that the Proteobacteria phylum was most dominant in the seeds of all hybrids, followed by Cyanobacteria and Actinobacteriota. The predominant genus in all hybrids was Pantoea, followed by Pseudomonas, Acinetobacter, Chalicogloea, Corynebacterium, Enterobacter, Enterococcus, Glutamicibacter, Kosakonia, and Marinilactibacillus. Unique genera in the hybrids were Pleurocapsa and Arthrobacter (T), Klebsiella (TF), Apibacter (ED), and Alloscardovia (KO). The genera that were most represented in one hybrid were Weissella and Staphylococcus (TF); Streptococcus (T); Gardnerella, Prevotella, and Rothia (KO); and Gilliamella, Lactobacillus, and Snodgrassella (ED). Thirty-two bacteria out of 156 isolates from the rhizosphere, roots, and seeds were selected with respect to various plant growth-promoting activities in vitro, i.e., nitrogen fixation, phosphate solubilization, siderophore production, indole-3-acetic acid production, 1-aminocyclopropane-1-carboxylic acid deaminase activity, hydrogen cyanide production, exoenzymatic activity (amylase, protease, lipase, cellulase, xylanase, mannanases, gelatinase, and pectinase), mitigation of environmental stresses, and antifungal activity. Mixta theicola KO3-44, Providencia vermicola ED3-10, Curtobacterium pusillum ED2-6, and Bacillus subtilis KO3-18 had the highest potential to promote plant growth due to their multiple abilities (nitrogen fixation, phosphate solubilization, production of siderophores, and IAA). The best antagonistic activity towards phytopathogenic fungi was found for Bacillus velezensis C3-19, Paenibacillus polymyxa C3-36 and Bacillus halotolerans C3-16/2.1. Only four isolates B. velezensis T2-23, B. subtilis T3-4, B. velezensis ED2-2, and Bacillus halotolerans C3-16/2.1 all showed enzymatic activity, with the exception of xylanase production. B. halotolerans C3-16/2.1 exhibited the greatest tolerance to salinity, while two B. subtilis strains (C3-62 and TF2-1) grew successfully at the maximum concentration of PEG. The current study demonstrates that sugar beet-associated bacteria have a wide range of beneficial traits and are therefore highly promising for the formulation of biological control and PGP agents.
Identifiants
pubmed: 38148389
doi: 10.1007/s00248-023-02329-0
pii: 10.1007/s00248-023-02329-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
19Informations de copyright
© 2023. The Author(s).
Références
Vandenkoornhuyse P, Quaiser A, Duhamel M et al (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206. https://doi.org/10.1111/NPH.13312
doi: 10.1111/NPH.13312
pubmed: 25655016
Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002. https://doi.org/10.1093/JXB/ERV466
doi: 10.1093/JXB/ERV466
pubmed: 26547794
Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004
doi: 10.1016/j.jare.2019.03.004
pubmed: 31341667
pmcid: 6630030
Gupta R, Anand G, Gaur R, Yadav D (2021) Plant–microbiome interactions for sustainable agriculture: a review. Physiol Mol Biol Plants 27:165–179. https://doi.org/10.1007/S12298-021-00927-1/FIGURES/4
doi: 10.1007/S12298-021-00927-1/FIGURES/4
pubmed: 33627969
pmcid: 7873154
Santoyo G (2022) How plants recruit their microbiome? New insights into beneficial interactions. J Adv Res 40:45–58. https://doi.org/10.1016/J.JARE.2021.11.020
doi: 10.1016/J.JARE.2021.11.020
pubmed: 36100333
Berg G, Erlacher A, Grube M (2015) The edible plant microbiome: importance and health issues. Princ Plant-Microbe Interact Microbes Sustain Agric 419–426. https://doi.org/10.1007/978-3-319-08575-3_44/COVER
Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15. https://doi.org/10.6064/2012/963401
doi: 10.6064/2012/963401
Dimkić I, Janakiev T, Petrović M et al (2022) Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - a review. Physiol Mol Plant Pathol 117:101754. https://doi.org/10.1016/J.PMPP.2021.101754
doi: 10.1016/J.PMPP.2021.101754
Mimić G, Živaljević B, Blagojević D et al (2022) Quantifying the effects of drought using the crop moisture stress as an indicator of maize and sunflower yield reduction in Serbia. Atmos 13(13):1880. https://doi.org/10.3390/ATMOS13111880
doi: 10.3390/ATMOS13111880
Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. https://doi.org/10.1016/J.TPLANTS.2008.10.004
doi: 10.1016/J.TPLANTS.2008.10.004
pubmed: 19056309
Sessitsch A, Brader G, Pfaffenbichler N et al (2018) The contribution of plant microbiota to economy growth. Microb Biotechnol 11:801. https://doi.org/10.1111/1751-7915.13290
doi: 10.1111/1751-7915.13290
pubmed: 29926519
pmcid: 6116737
Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:1–10. https://doi.org/10.1186/GB-2013-14-6-209/FIGURES/1
doi: 10.1186/GB-2013-14-6-209/FIGURES/1
Farhaoui A, Adadi A, Tahiri A et al (2022) Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L.). Physiol Mol. Plant Pathol 119:101829. https://doi.org/10.1016/j.pmpp.2022.101829
doi: 10.1016/j.pmpp.2022.101829
Tsurumaru H, Okubo T, Okazaki K et al (2015) Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 30:63–69. https://doi.org/10.1264/JSME2.ME14109
doi: 10.1264/JSME2.ME14109
pubmed: 25740621
pmcid: 4356465
Srivastava SN (2004) Management of sugar beet diseases. Fruit Veg Dis 307–355. https://doi.org/10.1007/0-306-48575-3_9
Hanson LE, Hill AL (2004) Fusarium species causing Fusarium yellows of sugarbeet. J Sugar Beet Res 41:163–178
doi: 10.5274/jsbr.41.4.163
Haddoudi I, Cabrefiga J, Mora I et al (2021) Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp. Biol Control 160:104671. https://doi.org/10.1016/J.BIOCONTROL.2021.104671
doi: 10.1016/J.BIOCONTROL.2021.104671
Cao S, Yang N, Zhao C et al (2018) Diversity of Fusarium species associated with root rot of sugar beet in China. J Gen Plant Pathol 84:321–329. https://doi.org/10.1007/S10327-018-0792-5/TABLES/2
doi: 10.1007/S10327-018-0792-5/TABLES/2
Smirnova I, Sadanov A (2019) Application of agriculturally important microorganisms for biocontrol of root rot infection of sugar beet. Arch Phytopathol Plant Prot 52:698–713
doi: 10.1080/03235408.2019.1588195
Zachow C, Müller H, Tilcher R, Berg G (2014) Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets. Front Microbiol 5:415. https://doi.org/10.3389/FMICB.2014.00415/ABSTRACT
doi: 10.3389/FMICB.2014.00415/ABSTRACT
pubmed: 25206350
pmcid: 4144093
Li M, Yang F, Wu X et al (2020) Effects of continuous cropping of sugar beet (Beta vulgaris L.) on its endophytic and soil bacterial community by high-throughput sequencing. Ann Microbiol 70:1–12. https://doi.org/10.1186/S13213-020-01583-8/FIGURES/6
doi: 10.1186/S13213-020-01583-8/FIGURES/6
Wolfgang A, Zachow C, Müller H et al (2020) Understanding the impact of cultivar, seed origin, and substrate on bacterial diversity of the sugar beet rhizosphere and suppression of soil-borne pathogens. Front Plant Sci 11:1450. https://doi.org/10.3389/FPLS.2020.560869/BIBTEX
doi: 10.3389/FPLS.2020.560869/BIBTEX
Neamatollahi E, Bannayan M, Jahansuz MR et al (2012) Agro-ecological zoning for wheat (Triticum aestivum), sugar beet (Beta vulgaris) and corn (Zea mays) on the Mashhad plain, Khorasan Razavi province. Egypt J Remote Sens Sp Sci 15:99–112. https://doi.org/10.1016/J.EJRS.2012.05.002
doi: 10.1016/J.EJRS.2012.05.002
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1–e1. https://doi.org/10.1093/nar/gks808
doi: 10.1093/nar/gks808
pubmed: 22933715
Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 137(13):581–583. https://doi.org/10.1038/nmeth.3869
doi: 10.1038/nmeth.3869
Murali A, Bhargava A, Wright ES (2018) IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6:1–14. https://doi.org/10.1186/S40168-018-0521-5/FIGURES/6
doi: 10.1186/S40168-018-0521-5/FIGURES/6
McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/JOURNAL.PONE.0061217
doi: 10.1371/JOURNAL.PONE.0061217
pubmed: 23630581
pmcid: 3632530
Pavoine S, Dufour AB, Chessel D (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. J Theor Biol 228:523–537. https://doi.org/10.1016/J.JTBI.2004.02.014
doi: 10.1016/J.JTBI.2004.02.014
pubmed: 15178200
Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. https://doi.org/10.1111/J.1541-0420.2005.00440.X
doi: 10.1111/J.1541-0420.2005.00440.X
pubmed: 16542252
McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82:290. https://doi.org/10.2307/2680104
doi: 10.2307/2680104
Yang (2020) yiluheihei/microbiomeMarker: microbiomeMarker 0.0.1. https://doi.org/10.5281/ZENODO.3749415
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21. https://doi.org/10.1186/S13059-014-0550-8/FIGURES/9
doi: 10.1186/S13059-014-0550-8/FIGURES/9
Baldani JI, Reis VM, Videira SS et al (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431. https://doi.org/10.1007/S11104-014-2186-6/FIGURES/4
doi: 10.1007/S11104-014-2186-6/FIGURES/4
Woodman ME (2008) Direct PCR of intact bacteria (colony PCR). Curr Protoc Microbiol 9:A.3D.1-A.3D.6. https://doi.org/10.1002/9780471729259.MCA03DS9
Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15. https://doi.org/10.1034/J.1399-3054.2003.00086.X
doi: 10.1034/J.1399-3054.2003.00086.X
pubmed: 12702008
Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. https://doi.org/10.1111/J.1574-6968.1999.TB13383.X
doi: 10.1111/J.1574-6968.1999.TB13383.X
pubmed: 9919677
Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192. https://doi.org/10.1104/PP.26.1.192
doi: 10.1104/PP.26.1.192
pubmed: 16654351
pmcid: 437633
Pérez-Miranda S, Cabirol N, George-Téllez R et al (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127–131. https://doi.org/10.1016/J.MIMET.2007.03.023
doi: 10.1016/J.MIMET.2007.03.023
pubmed: 17507108
Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506. https://doi.org/10.3389/FMICB.2019.01506/BIBTEX
doi: 10.3389/FMICB.2019.01506/BIBTEX
pubmed: 31338077
pmcid: 6629829
Zlosnik JEA, Hird TJ, Fraenkel MC et al (2008) Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. J Clin Microbiol 46:1470–1473. https://doi.org/10.1128/JCM.02273-07
doi: 10.1128/JCM.02273-07
pubmed: 18256220
pmcid: 2292898
Kim W, Surette MG (2003) Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online 5:189–196. https://doi.org/10.1251/BPO61/METRICS
doi: 10.1251/BPO61/METRICS
pubmed: 14615815
pmcid: 248473
Knežević MM, Stajković-Srbinović OS, Assel M et al (2021) The ability of a new strain of Bacillus pseudomycoides to improve the germination of alfalfa seeds in the presence of fungal infection or chromium. Rhizosphere 18:100353. https://doi.org/10.1016/J.RHISPH.2021.100353
doi: 10.1016/J.RHISPH.2021.100353
Saroj P, Manasa P, Narasimhulu K (2018) Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresour Bioprocess 5:1–14. https://doi.org/10.1186/S40643-018-0216-6/FIGURES/7
doi: 10.1186/S40643-018-0216-6/FIGURES/7
Berić T, Urdaci MC, Stanković S, Knežević-Vukčević J (2009) RAPD analysis of genetic diversity and qualitative assessment of hydrolytic activities in a collection of Bacillus sp. isolate. Arch Biol Sci 61:645–652. https://doi.org/10.2298/ABS0904645B
doi: 10.2298/ABS0904645B
Huber B, Riedel K, Hentzer M et al (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528. https://doi.org/10.1099/00221287-147-9-2517/CITE/REFWORKS
doi: 10.1099/00221287-147-9-2517/CITE/REFWORKS
pubmed: 11535791
Ben SH, Cherif-Silini H, Bouket AC et al (2019a) Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front Microbiol 10:3236. https://doi.org/10.3389/FMICB.2018.03236/BIBTEX
doi: 10.3389/FMICB.2018.03236/BIBTEX
Medina P, Baresi L (2007) Rapid identification of gelatin and casein hydrolysis using TCA. J Microbiol Methods 69:391–393. https://doi.org/10.1016/J.MIMET.2007.01.005
doi: 10.1016/J.MIMET.2007.01.005
pubmed: 17289191
Slama H, Ben TMA, Bouket AC et al (2019b) Screening of the high-rhizosphere competent Limoniastrum monopetalum’ culturable endophyte microbiota allows the recovery of multifaceted and versatile biocontrol agents. Microorg 7(7):249. https://doi.org/10.3390/MICROORGANISMS7080249
doi: 10.3390/MICROORGANISMS7080249
Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502. https://doi.org/10.1007/S13213-013-0680-3/FIGURES/68/FIGURES/9
doi: 10.1007/S13213-013-0680-3/FIGURES/68/FIGURES/9
Dimkić I, Berić T, Stević T et al (2015) Additive and synergistic effects of Bacillus spp. isolates and essential oils on the control of phytopathogenic and saprophytic fungi from medicinal plants and marigold seeds. Biol Control 87:6–13. https://doi.org/10.1016/J.BIOCONTROL.2015.04.011
doi: 10.1016/J.BIOCONTROL.2015.04.011
Krstić Tomić T, Atanasković I, Nikolić I et al (2023) Culture-dependent and metabarcoding characterization of the sugar beet (Beta vulgaris L.) microbiome for high-yield isolation of bacteria with plant growth-promoting traits. Microorganisms 11:1538. https://doi.org/10.3390/MICROORGANISMS11061538/S1
doi: 10.3390/MICROORGANISMS11061538/S1
pubmed: 37375040
pmcid: 10302512
Bertoldo G, Della Lucia MC, Squartini A et al (2021) Endophytic microbiome responses to sulfur availability in Beta vulgaris (L.). Int J Mol Sci 22(22):7184. https://doi.org/10.3390/IJMS22137184
doi: 10.3390/IJMS22137184
pubmed: 34281236
pmcid: 8269133
Rojas-Tapias DF, Bonilla R, Dussán J (2014) Effect of inoculation and co-inoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on growth, fitness, and copper accumulation of maize (Zea mays). Water Air Soil Pollut 225:1–13. https://doi.org/10.1007/S11270-014-2232-2/FIGURES/4
doi: 10.1007/S11270-014-2232-2/FIGURES/4
Silambarasan S, Vangnai AS (2016) Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. J Hazard Mater 302:426–436. https://doi.org/10.1016/J.JHAZMAT.2015.10.010
doi: 10.1016/J.JHAZMAT.2015.10.010
pubmed: 26489917
Abbas S, Javed MT, Shahid M et al (2020) Acinetobacter sp. SG-5 inoculation alleviates cadmium toxicity in differentially Cd tolerant maize cultivars as deciphered by improved physio-biochemical attributes, antioxidants and nutrient physiology. Plant Physiol Biochem 155:815–827. https://doi.org/10.1016/j.plaphy.2020.08.024
doi: 10.1016/j.plaphy.2020.08.024
pubmed: 32882619
Jha CK, Aeron A, Patel BV et al (2011) Enterobacter: Role in plant growth promotion. Bact Agrobiol Plant Growth Responses 159–182. https://doi.org/10.1007/978-3-642-20332-9_8
Silva SGA, Costa MM, Cardoso AMS et al (2023) Fusarium falciforme and Fusarium suttonianum cause root rot of melon in Brazil. Plant Pathol. https://doi.org/10.1111/PPA.13701
Panwar M, Tewari R, Nayyar H (2016) Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiol Mol Biol Plants 22:445–459. https://doi.org/10.1007/S12298-016-0376-9/FIGURES/2
doi: 10.1007/S12298-016-0376-9/FIGURES/2
pubmed: 27924118
pmcid: 5120033
Borker SS, Thakur A, Kumar S et al (2021) Comparative genomics and physiological investigation supported safety, cold adaptation, efficient hydrolytic and plant growth-promoting potential of psychrotrophic Glutamicibacter arilaitensis LJH19, isolated from night-soil compost. BMC Genomics 22:1–17. https://doi.org/10.1186/S12864-021-07632-Z/FIGURES/5
doi: 10.1186/S12864-021-07632-Z/FIGURES/5
Huang XX, Xu L, Shang J, Sun JQ (2022) Marinilactibacillus kalidii sp. nov., an indole acetic acid-producing endophyte isolated from a shoot of halophyte Kalidium cuspidatum. Curr Microbiol 79:1–7. https://doi.org/10.1007/S00284-022-02894-6/TABLES/2
doi: 10.1007/S00284-022-02894-6/TABLES/2
Patel P, Gajjar H, Joshi B et al (2022) Inoculation of salt-tolerant Acinetobacter sp (RSC9) improves the sugarcane (Saccharum sp. hybrids) growth under salinity stress condition. Sugar Tech 24:494–501. https://doi.org/10.1007/S12355-021-01043-W/TABLES/4
doi: 10.1007/S12355-021-01043-W/TABLES/4
Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2. https://doi.org/10.1128/MR.42.1.2-44.1978
doi: 10.1128/MR.42.1.2-44.1978
pubmed: 111023
pmcid: 281417
Killer J, Ročková Š, Vlková E et al (2013) Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol 63:4439–4446. https://doi.org/10.1099/IJS.0.051326-0/CITE/REFWORKS
doi: 10.1099/IJS.0.051326-0/CITE/REFWORKS
pubmed: 23907220
Kwong WK, Steele MI, Moran NA (2018) Genome sequences of Apibacter spp., gut symbionts of Asian honey bees. Genome Biol Evol 10:1174–1179. https://doi.org/10.1093/GBE/EVY076
doi: 10.1093/GBE/EVY076
pubmed: 29635372
pmcid: 5913662
Mattarelli P, Biavati B (2015) Alloscardovia. Bergey’s Man Syst Archaea Bact 1–3. https://doi.org/10.1002/9781118960608.GBM00018
Xu X, Xu M, Zhao Q et al (2018) Complete genome sequence of Cd(II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Curr Microbiol 75:1231–1239. https://doi.org/10.1007/S00284-018-1515-Z/TABLES/4
doi: 10.1007/S00284-018-1515-Z/TABLES/4
pubmed: 29804207
Sharma S, Gang S, Schumacher J et al (2021) Genomic appraisal of Klebsiella PGPB isolated from soil to enhance the growth of barley. Genes Genomics 43:869–883. https://doi.org/10.1007/S13258-021-01099-8/FIGURES/7
doi: 10.1007/S13258-021-01099-8/FIGURES/7
pubmed: 33961231
Lim SJ, Bordenstein SR (2020) An introduction to phylosymbiosis. Proc R Soc B 287(1922):20192900. https://doi.org/10.1098/rspb.2019.2900
doi: 10.1098/rspb.2019.2900
pubmed: 32126958
pmcid: 7126058
Zhu L, Guo J, Sun Y et al (2021) Acetic acid-producing endophyte Lysinibacillus fusiformis orchestrates jasmonic acid signaling and contributes to repression of cadmium uptake in tomato plants. Front Plant Sci 12:1041. https://doi.org/10.3389/FPLS.2021.670216/BIBTEX
doi: 10.3389/FPLS.2021.670216/BIBTEX
Stephens K, Bentley WE (2020) Synthetic biology for manipulating quorum sensing in microbial consortia. Trends Microbiol 28:633–643. https://doi.org/10.1016/J.TIM.2020.03.009
doi: 10.1016/J.TIM.2020.03.009
pubmed: 32340782
Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol Ecol 21:231–242. https://doi.org/10.1111/J.1574-6941.1996.TB00350.X
doi: 10.1111/J.1574-6941.1996.TB00350.X
Okazaki K, Iino T, Kuroda Y et al (2014) An assessment of the diversity of culturable bacteria from main root of sugar beet. Microbes Environ 29:220–223. https://doi.org/10.1264/JSME2.ME13182
doi: 10.1264/JSME2.ME13182
pubmed: 24789987
pmcid: 4103529
Natsagdorj O (2019) Biochemical characteristics and plant tissue localization of plant growth-promoting bacteria isolated from sugar beet (Beta vulgaris L.) Dissertation,. Iwate University
Kumar S (2012) Biopesticides: a need for food and environmental safety. J Biofertil Biopestic 3:1–3. https://doi.org/10.4172/2155-6202.1000e107
doi: 10.4172/2155-6202.1000e107
Galloway JN, Schlesinger WH, Levy H et al (1995) Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem Cycles 9:235–252. https://doi.org/10.1029/95GB00158
doi: 10.1029/95GB00158
Hagaggi NSA, Mohamed AAA (2020) Enhancement of Zea mays (L.) growth performance using indole acetic acid producing endophyte Mixta theicola isolated from Solenostemma argel (Hayne). South African J Bot 134:64–71. https://doi.org/10.1016/J.SAJB.2020.02.034
doi: 10.1016/J.SAJB.2020.02.034
Panpatte D, Deepak P, Harsh S et al (2020) Providencia vermicola AAU PR1-a new bioinoculant for agriculture with multiple utility. Ind J Pure App Biosci 8:185–194. https://doi.org/10.18782/2582-2845.8160
doi: 10.18782/2582-2845.8160
Hussain K, Hameed S, Shahid M et al (2015) First report of Providencia vermicola strains characterized for enhanced rapeseed growth attributing parameters. Int J Agric Biol 17:1110–1116. https://doi.org/10.17957/IJAB/15.0033
doi: 10.17957/IJAB/15.0033
Cavalcante Da Silva MJ, Ferreira S, Junior P et al (2020) IAA production of indigenous isolate of plant growth promoting rhizobacteria in the presence of tryptophan. AJCS 14:1835–2707. https://doi.org/10.21475/ajcs.20.14.03.p2239
doi: 10.21475/ajcs.20.14.03.p2239
Karagöz H, Çakmakçi R, Hosseinpour A, Kodaz S (2018) Alleviation of water stress and promotion of the growth of sugar beet (Beta vulgaris L.) plants by multi-traits rhizobacteria. Appl Ecol. Environ Res 16:6801–6813. https://doi.org/10.15666/AEER/1605_68016813
doi: 10.15666/AEER/1605_68016813
Ramyabharathi SA, Raguchander T (2014) Mode of action of Bacillus subtilis EPCO16 against tomato fusarium wilt. Biochem Cell Arch 14:47–50
Mwangi FM, Rüdiger H, Sikora RA, Mutitu E (2002) Does HCN from Pseudomonas fluorescens isolate T58 contribute in biocontrol of Fusarium oxysporum f. sp lycopersici?
Shimoi S, Inoue K, Kitagawa H et al (2010) Biological control for rice blast disease by employing detachment action with gelatinolytic bacteria. Biol Control 55:85–91. https://doi.org/10.1016/J.BIOCONTROL.2010.07.008
doi: 10.1016/J.BIOCONTROL.2010.07.008
Hassan SED (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8:687–695. https://doi.org/10.1016/J.JARE.2017.09.001
doi: 10.1016/J.JARE.2017.09.001
pubmed: 28951786
pmcid: 5607146
Wu X, Fan Y, Wang R et al (2022) Bacillus halotolerans KKD1 induces physiological, metabolic and molecular reprogramming in wheat under saline condition. Front Plant Sci 13. https://doi.org/10.3389/FPLS.2022.978066/FULL
Kim YC, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. Plant Responses to Drought Stress From Morphol to Mol Featur 9783642326530:383–413. https://doi.org/10.1007/978-3-642-32653-0_15/FIGURES/1
doi: 10.1007/978-3-642-32653-0_15/FIGURES/1
Schroers HJ, Baayen RP, Meffert JP et al (2004) Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex. Mycologia 96:393–406. https://doi.org/10.1080/15572536.2005.11832984
doi: 10.1080/15572536.2005.11832984
pubmed: 21148861
Xu M, Zhang X, Yu J et al (2021) First report of Fusarium ipomoeae causing peanut leaf spot in China. Plant Dis 105:3754. https://doi.org/10.1094/PDIS-01-21-0226-PDN
doi: 10.1094/PDIS-01-21-0226-PDN
Arzanlou M, Mousavi S, Bakhshi M et al (2016) Inhibitory effects of antagonistic bacteria inhabiting the rhizosphere of the sugarbeet plants, on Cercospora beticola Sacc., the causal agent of Cercospora leaf spot disease on sugarbeet. J Plant Prot Res 56:6–14. https://doi.org/10.1515/JPPR-2016-0002
doi: 10.1515/JPPR-2016-0002
Lee SY, Weon HY, Kim JJ, Han JH (2016) Biocontrol of leaf mustard powdery mildew caused by Erysiphe cruciferarum using Bacillus velezensis YP2. Korean J Pestic Sci 20:369–374. https://doi.org/10.7585/KJPS.2016.20.4.369
doi: 10.7585/KJPS.2016.20.4.369
Torres M, Llamas I, Torres B et al (2020) Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1. Appl Soil Ecol 150:103453. https://doi.org/10.1016/J.APSOIL.2019.103453
doi: 10.1016/J.APSOIL.2019.103453
Borriss R, Wu H, Gao X (2019) Secondary metabolites of the plant growth promoting model rhizobacterium Bacillus velezensis FZB42 are involved in direct suppression of plant pathogens and in stimulation of plant-induced systemic resistance. Second Metab Plant Growth Promot Rhizomicroorganisms Discov Appl 147–168. https://doi.org/10.1007/978-981-13-5862-3_8/FIGURES/2
Son SH, Khan Z, Kim SG, Kim YH (2009) Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J Appl Microbiol 107:524–532. https://doi.org/10.1111/J.1365-2672.2009.04238.X
doi: 10.1111/J.1365-2672.2009.04238.X
pubmed: 19457027
Sagredo-Beltrán J, De La Cruz-Rodríguez Y, Alvarado-Rodríguez M et al (2018) Genome sequence of Bacillus halotolerans strain MS50-18A with antifungal activity against phytopathogens, isolated from Saline soil in San Luís Potosí, Mexico. Genome Announc 6. https://doi.org/10.1128/GENOMEA.00135-18
Tsalgatidou PC, Thomloudi EE, Baira E et al (2022) Integrated genomic and metabolomic analysis illuminates key secreted metabolites produced by the novel endophyte Bacillus halotolerans Cal.l.30 involved in diverse biological control activities. Microorg 399(10):399. https://doi.org/10.3390/MICROORGANISMS10020399
doi: 10.3390/MICROORGANISMS10020399
Hanson LE (2007) Fusarium yellowing of sugar beet caused by Fusarium graminearum from Minnesota and Wyoming. :686. https://doi.org/10.1094/PD-90-0686A