PIM3 regulates myocardial ischemia/reperfusion injury via ferroptosis.

Cell death Ferroptosis Mechanism Myocardial I/R injury PIM3

Journal

Genes & genomics
ISSN: 2092-9293
Titre abrégé: Genes Genomics
Pays: Korea (South)
ID NLM: 101481027

Informations de publication

Date de publication:
26 Dec 2023
Historique:
received: 28 12 2022
accepted: 22 06 2023
revised: 16 06 2023
medline: 27 12 2023
pubmed: 27 12 2023
entrez: 26 12 2023
Statut: aheadofprint

Résumé

Myocardial ischemia/reperfusion (I/R) injury is closely related with cardiovascular diseases; however, the underlying pathogenic mechanisms remain not fully understood. This study sought to investigate the effect and mechanisms of PIM3 implicated in myocardial I/R injury using a rat model of myocardial I/R injury and a cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) induction. The morphology changes were detected by HE staining while cell viability was accessed by the CCK-8 method. The characteristics of ferroptosis were evaluated by ROS production, MDA content, SOD level, iron content, TfR1, FTH1, and GPX4 expression. Myocardial I/R operation increased myocardial tissue damage in rats, while OGD/R treatment reduced the viability of H9c2 cells. Both myocardial I/R operation and OGD/R stimulation increased ferroptosis, as demonstrated by elevated ROS, MDA, iron content, decreased SOD level, upregulation of TfR1, and downregulation of FTH1 and GPX4. Additionally, myocardial I/R modeling or OGD/R treatment enhanced the expression of PIM3. Silencing of PIM3 inhibited ferroptosis, which resulted in alleviated myocardial I/R-induced damage and improved H9c2 cell survival. Our findings highlight a vital role of PIM3 in myocardial I/R injury, indicating that PIM3-targeting ferroptosis may be a promising target for the development of novel therapies of myocardial I/R injury-associated diseases.

Sections du résumé

BACKGROUND BACKGROUND
Myocardial ischemia/reperfusion (I/R) injury is closely related with cardiovascular diseases; however, the underlying pathogenic mechanisms remain not fully understood. This study sought to investigate the effect and mechanisms of PIM3 implicated in myocardial I/R injury using a rat model of myocardial I/R injury and a cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) induction.
METHODS METHODS
The morphology changes were detected by HE staining while cell viability was accessed by the CCK-8 method. The characteristics of ferroptosis were evaluated by ROS production, MDA content, SOD level, iron content, TfR1, FTH1, and GPX4 expression.
RESULTS RESULTS
Myocardial I/R operation increased myocardial tissue damage in rats, while OGD/R treatment reduced the viability of H9c2 cells. Both myocardial I/R operation and OGD/R stimulation increased ferroptosis, as demonstrated by elevated ROS, MDA, iron content, decreased SOD level, upregulation of TfR1, and downregulation of FTH1 and GPX4. Additionally, myocardial I/R modeling or OGD/R treatment enhanced the expression of PIM3. Silencing of PIM3 inhibited ferroptosis, which resulted in alleviated myocardial I/R-induced damage and improved H9c2 cell survival.
CONCLUSIONS CONCLUSIONS
Our findings highlight a vital role of PIM3 in myocardial I/R injury, indicating that PIM3-targeting ferroptosis may be a promising target for the development of novel therapies of myocardial I/R injury-associated diseases.

Identifiants

pubmed: 38148455
doi: 10.1007/s13258-023-01475-6
pii: 10.1007/s13258-023-01475-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s) under exclusive licence to The Genetics Society of Korea.

Références

Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O, Mittereder L, Mayer-Barber KD, Andrade BB, Sher A (2019) A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med 216:556–570
doi: 10.1084/jem.20181776 pubmed: 30787033 pmcid: 6400546
Bi X, Zhang G, Wang X, Nguyen C, May HI, Li X, Al-Hashimi AA, Austin RC, Gillette TG, Fu G, Wang ZV, Hill JA (2018) Endoplasmic reticulum chaperone GRP78 Protects heart from Ischemia/reperfusion injury through Akt activation. Circ Res 122:1545–1554
doi: 10.1161/CIRCRESAHA.117.312641 pubmed: 29669712 pmcid: 5970094
Du J, Zheng X, Cai S, Zhu Z, Tan J, Hu B, Huang Z, Jiao H (2015) MicroRNA506 participates in pancreatic cancer pathogenesis by targeting PIM3. Mol Med Rep 12:5121–5126
doi: 10.3892/mmr.2015.4109 pubmed: 26238203
Fang Y, Chen X, Tan Q, Zhou H, Xu J, Gu Q (2021) Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent Sci 7:980–989
doi: 10.1021/acscentsci.0c01592 pubmed: 34235259 pmcid: 8227600
Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, Upadhyayula PS, Canoll P, Uchida K, Soni RK, Hadian K, Stockwell BR (2020) Transferrin receptor is a specific ferroptosis marker. Cell Rep 30(3411–3423):e3417
Gao, Y., Xu, W., Guo, C., and Huang, T. (2022) GATA1 regulates the microRNA3283p/PIM1 axis via circular RNA ITGB1 to promote renal ischemia/reperfusion injury in HK2 cells. International journal of molecular medicine 50
Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, Xiang Y, Gao Q, Wen C, Ma W, Liu W, Zhang M, Yang Z, Wang W, Zhang R, Chen B, Xie T, Sui X, Tao W (2021) Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharmaceutica Sinica B 11:4045–4054
doi: 10.1016/j.apsb.2021.03.036 pubmed: 35024325 pmcid: 8727776
Li W, Li W, Leng Y, Xiong Y, Xia Z (2020) Ferroptosis Is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol 39:210–225
doi: 10.1089/dna.2019.5097 pubmed: 31809190
Li X, Ma N, Xu J, Zhang Y, Yang P, Su X, Xing Y, An N, Yang F, Zhang G, Zhang L, Xing Y (2021) Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longev 2021:1587922
doi: 10.1155/2021/1587922 pubmed: 34745412 pmcid: 8568519
Liang D, Minikes AM, Jiang X (2022) Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 82:2215–2227
doi: 10.1016/j.molcel.2022.03.022 pubmed: 35390277 pmcid: 9233073
Liao YH, Xia N, Zhou SF, Tang TT, Yan XX, Lv BJ, Nie SF, Wang J, Iwakura Y, Xiao H, Yuan J, Jevallee H, Wei F, Shi GP, Cheng X (2012) Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J Am Coll Cardiol 59:420–429
doi: 10.1016/j.jacc.2011.10.863 pubmed: 22261166 pmcid: 3262985
Liu, S., Yan, S., Zhu, J., Lu, R., Kang, C., Tang, K., Zeng, J., Ding, M., Guo, Z., Lai, X., Jiang, Y., Wu, S., Zhou, L., Sun, L., and Zhou, Z. W. (2022) Combination RSL3 Treatment Sensitizes Ferroptosis- and EGFR-Inhibition-Resistant HNSCCs to Cetuximab. International journal of molecular sciences 23
Ljungman PLS, Andersson N, Stockfelt L, Andersson EM, Nilsson Sommar J, Eneroth K, Gidhagen L, Johansson C, Lager A, Leander K, Molnar P, Pedersen NL, Rizzuto D, Rosengren A, Segersson D, Wennberg P, Barregard L, Forsberg B, Sallsten G, Bellander T, Pershagen G (2019) Long-term exposure to particulate air pollution, black carbon, and their source components in relation to ischemic heart disease and stroke. Environ Health Perspect 127:107012
doi: 10.1289/EHP4757 pubmed: 31663781 pmcid: 6867232
Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O’Connell D, Zhang P, Li Y, Gao T, Ren W, Yang Y (2018) miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 25:1457–1472
doi: 10.1038/s41418-017-0053-8 pubmed: 29348676 pmcid: 6113319
Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J, Berns A (2004) Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 24:6104–6115
doi: 10.1128/MCB.24.13.6104-6115.2004 pubmed: 15199164 pmcid: 480904
Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H (2022) Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Translat Sci 7:800–819
doi: 10.1016/j.jacbts.2022.03.012
Mukaida N, Wang YY, Li YY (2011) Roles of Pim-3, a novel survival kinase, in tumorigenesis. Cancer Sci 102:1437–1442
doi: 10.1111/j.1349-7006.2011.01966.x pubmed: 21518143
Mung KL, Eccleshall WB, Santio NM, Rivero-Muller A, Koskinen PJ (2021) PIM kinases inhibit AMPK activation and promote tumorigenicity by phosphorylating LKB1. Cell Commun Signal 19:68
doi: 10.1186/s12964-021-00749-4 pubmed: 34193159 pmcid: 8247201
Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R, Siddiqi S, Emmanuel GN, Wu W, Fischer K, Martindale JJ, Glembotski CC, Leri A, Kajstura J, Magnuson N, Berns A, Beretta RM, Houser SR, Schaefer EM, Anversa P, Sussman MA (2007) Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13:1467–1475
doi: 10.1038/nm1671 pubmed: 18037896
Orellana DI, Santambrogio P, Rubio A, Yekhlef L, Cancellieri C, Dusi S, Giannelli SG, Venco P, Mazzara PG, Cozzi A, Ferrari M, Garavaglia B, Taverna S, Tiranti V, Broccoli V, Levi S (2016) Coenzyme a corrects pathological defects in human neurons of PANK2-associated neurodegeneration. EMBO Mol Med 8:1197–1211
doi: 10.15252/emmm.201606391 pubmed: 27516453 pmcid: 5048368
Qi Q, Pan Y, Han S, Liao H, Jiang Y, Shen J, Zhong L, Wang X, Chen J (2019) PIM3 functions as oncogenic factor and promotes the tumor growth and metastasis in colorectal cancer. Anat Rec 302:1552–1560
doi: 10.1002/ar.24024
Ren C, Yang T, Qiao P, Wang L, Han X, Lv S, Sun Y, Liu Z, Du Y, Yu Z (2018) PIM2 interacts with tristetraprolin and promotes breast cancer tumorigenesis. Mol Oncol 12:690–704
doi: 10.1002/1878-0261.12192 pubmed: 29570932 pmcid: 5928357
Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M, Erpenbeck L, Brill A, Wang Y, Wagner DD (2014) VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 123:141–148
doi: 10.1182/blood-2013-07-514992 pubmed: 24200682 pmcid: 3879903
Severino, P., D'Amato, A., Pucci, M., Infusino, F., Adamo, F., Birtolo, L. I., Netti, L., Montefusco, G., Chimenti, C., Lavalle, C., Maestrini, V., Mancone, M., Chilian, W. M., and Fedele, F. (2020) Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. International journal of molecular sciences 21
Shan X, Lv ZY, Yin MJ, Chen J, Wang J, Wu QN (2021) The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through Ferroptosis. Oxid Med Cell Longev 2021:8880141
doi: 10.1155/2021/8880141 pubmed: 33628391 pmcid: 7884153
Wang G, Liu G, Ye Y, Fu Y, Zhang X (2019) Bufothionine exerts anti-cancer activities in gastric cancer through Pim3. Life Sci 232:116615
doi: 10.1016/j.lfs.2019.116615 pubmed: 31260686
Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, Huang Z, Lin M, Wu H, Xu D (2021) Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /System xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered 12:10924–10934
doi: 10.1080/21655979.2021.1995994 pubmed: 34699317 pmcid: 8809912
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331
doi: 10.1016/j.cell.2013.12.010 pubmed: 24439385 pmcid: 4076414
Yang H, He K, Dong W, Fang J, Zhong S, Tang L, Long L (2020) PIM-1 may function as an oncogene in cervical cancer via activating the EGFR signaling. Int J Biol Markers 35:67–73
doi: 10.1177/1724600820936295 pubmed: 32914663
Yuan Y, Wang C, Zhuang X, Lin S, Luo M, Deng W, Zhou J, Liu L, Mao L, Peng W, Chen J, Wang Q, Shu Y, Xue Y, Huang P (2022) PIM1 promotes hepatic conversion by suppressing reprogramming-induced ferroptosis and cell cycle arrest. Nat Commun 13:5237
doi: 10.1038/s41467-022-32976-9 pubmed: 36068222 pmcid: 9448736
Zhang X, Song M, Kundu JK, Lee MH, Liu ZZ (2018) PIM Kinase as an executional target in cancer. J Cancer Prevention 23:109–116
doi: 10.15430/JCP.2018.23.3.109
Zhao WK, Zhou Y, Xu TT, Wu Q (2021) Ferroptosis: opportunities and challenges in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev 2021:9929687
pubmed: 34725566 pmcid: 8557044
Zhao L, Wang Y, Min X, Yang H, Zhang P, and Zeng Q, (2010) Ischemia-reperfusion injury up-regulates Pim-3 gene expression in myocardial tissue. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban 30, 704-708

Auteurs

Ting Li (T)

Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China.

Fangyao Liu (F)

Department of Cardiovascular Medicine, The Second Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China.

Ying Tan (Y)

Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China.

Yutao Peng (Y)

Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China.

Xuefeng Xu (X)

Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China.

Yushan Yang (Y)

School of Resource, Environment and Safety Engineering, Univerity of South China, Hengyang, 421001, Hunan, People's Republic of China. 632700597@qq.com.

Classifications MeSH