Comparison of two swept-source optical coherence tomography devices, a Scheimpflug camera system and a ray-tracing aberrometer in the measurement of corneal power in patients with cataract.

Astigmatic vector analysis CASIA2 Corneal curvature IOLMaster 700 Pentacam iTrace

Journal

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248

Informations de publication

Date de publication:
27 Dec 2023
Historique:
received: 06 06 2023
accepted: 14 12 2023
revised: 03 12 2023
medline: 27 12 2023
pubmed: 27 12 2023
entrez: 27 12 2023
Statut: aheadofprint

Résumé

To assess the differences and similarities in the corneal curvature obtained by two swept-source optical coherence tomography (SS-OCT) devices, Scheimpflug imaging system and one ray tracing aberrometer in patients with cataracts. Moreover, this study aimed to compare the differences in posterior corneal (PK), total corneal (TK) and true net power (TNP) measurements among the IOLMaster 700, CASIA2, and Pentacam. A total of 200 eyes of 200 patients (116 female, 58%) were enrolled in this study, with a mean age of 65.9 ± 9.5 years. The flattest (Kf), steepest (Ks), and mean cornal powers (Km), J There were no significant differences between the IOLMaster 700 and Pentacam for any of the keratometry values. Additionally, there were no significant differences between the IOLMaster 700 and iTrace in evaluating J Although strong correlations and good agreement were found among the IOLMaster700, CASIA2, Pentacam and iTrace for Kf, Ks, Km and J

Identifiants

pubmed: 38150029
doi: 10.1007/s00417-023-06348-y
pii: 10.1007/s00417-023-06348-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Tianjin Key Medical Discipline (Specialty) Construction Project
ID : TJYXZDXK-037A

Informations de copyright

© 2023. The Author(s).

Références

Srivannaboon S, Chirapapaisan C (2019) Comparison of refractive outcomes using conventional keratometry or total keratometry for IOL power calculation in cataract surgery. Graefes Arch Clin Exp Ophthalmol 257:2677–2682. https://doi.org/10.1007/s00417-019-04443-7
doi: 10.1007/s00417-019-04443-7 pubmed: 31486917
Montés-Micó R, Pastor-Pascual F, Ruiz-Mesa R, Tañá-Rivero P (2021) Ocular biometry with swept-source optical coherence tomography. J Cataract Refract Surg 47:802–814. https://doi.org/10.1097/j.jcrs.0000000000000551
doi: 10.1097/j.jcrs.0000000000000551 pubmed: 33315731
Montés-Micó R (2022) Evaluation of 6 biometers based on different optical technologies. J Cataract Refract Surg 48:16–25. https://doi.org/10.1097/j.jcrs.0000000000000690
doi: 10.1097/j.jcrs.0000000000000690 pubmed: 34091551
Kohnen T (2022) Keeping patient outcome surveys in pace with presbyopia correction technology. J Cataract Refract Surg 48:133–134. https://doi.org/10.1097/j.jcrs.0000000000000880
doi: 10.1097/j.jcrs.0000000000000880 pubmed: 35082237
Shetty R, Trivedi D, Ranade R, Arun S, Khamar P, Kundu G (2022) Repeatability and agreement of wavefront aberrations of a new hybrid topographer and aberrometer in healthy eyes. J Cataract Refract Surg 48:408–416. https://doi.org/10.1097/j.jcrs.0000000000000775
doi: 10.1097/j.jcrs.0000000000000775 pubmed: 34393184
Wan KH, Liao XL, Yu M et al (2022) Wavefront aberrometry repeatability and agreement-a comparison between Pentacam AXL Wave, iTrace and OPD-Scan III. Ophthalmic Physiol Opt 42:1326–1337. https://doi.org/10.1111/opo.13047
doi: 10.1111/opo.13047 pubmed: 36102169
Ashena Z, Gallagher S, Naveed H, Spalton DJ, Nanavaty MA (2022) Comparison of anterior corneal aberrometry, keratometry and pupil size with scheimpflug tomography and ray tracing aberrometer. Vision (Basel) 6:18. https://doi.org/10.3390/vision6010018
doi: 10.3390/vision6010018 pubmed: 35324603
Han SU, Ryu S, Jung H et al (2022) Analysis of keratometric measurements in accordance with axial length in an aged population. Sci Rep 12:4087. https://doi.org/10.1038/s41598-022-08194-0
doi: 10.1038/s41598-022-08194-0 pubmed: 35260772 pmcid: 8904526
Thibos LN, Horner D (2001) Power vector analysis of the optical outcome of refractive surgery. J Cataract Refract Surg 27:80–85. https://doi.org/10.1016/s0886-3350(00)00797-5
doi: 10.1016/s0886-3350(00)00797-5 pubmed: 11165859
Kundu G, Shetty R, Ranade R et al (2022) Repeatability and agreement of a new scheimpflug device and a hartmann-shack aberrometer with a ray-tracing aberrometer in normal, keratoconus, and CXL groups. J Refract Surg 38:201–208. https://doi.org/10.3928/1081597X-20220110-01
doi: 10.3928/1081597X-20220110-01 pubmed: 35275005
Thibos LN, Wheeler W, Horner D (1997) Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci 74:367–375. https://doi.org/10.1097/00006324-199706000-00019
doi: 10.1097/00006324-199706000-00019 pubmed: 9255814
Koch DD, Wang L, Abulafia A, Holladay JT, Hill W (2021) Rethinking the optimal methods for vector analysis of astigmatism. J Cataract Refract Surg 47:100–105. https://doi.org/10.1097/j.jcrs.0000000000000428
doi: 10.1097/j.jcrs.0000000000000428 pubmed: 32947387
Akoglu H (2018) User’s guide to correlation coefficients. Turk J Emerg Med 18(3):91–93. https://doi.org/10.1016/j.tjem.2018.08.001
doi: 10.1016/j.tjem.2018.08.001 pubmed: 30191186 pmcid: 6107969
Hoffmann PC, Hütz WW (2010) Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes. J Cataract Refract Surg 36:1479–1485. https://doi.org/10.1016/j.jcrs.2010.02.025
doi: 10.1016/j.jcrs.2010.02.025 pubmed: 20692558
Ferreira TB, Hoffer KJ, Ribeiro F, Ribeiro P, O’Neill JG (2017) Ocular biometric measurements in cataract surgery candidates in Portugal. PLoS ONE 12:e0184837. https://doi.org/10.1371/journal.pone.0184837
doi: 10.1371/journal.pone.0184837 pubmed: 28982150 pmcid: 5629012
Lee BW, Galor A, Feuer WJ, Pouyeh B, Pelletier JS, Vaddavalli PK, Lemelman BT, See C, Yoo SH (2013) Agreement between Pentacam and IOL master in patients undergoing toric IOL implantation. J Refract Surg 29:114–120. https://doi.org/10.3928/1081597X-20130117-06
doi: 10.3928/1081597X-20130117-06 pubmed: 23380412
Jin GM, Xiao B, Zhou YJ, Wang YY, Li XP, Zheng DY (2020) Agreement of corneal curvature and central corneal thickness obtained from a swept-source OCT and Pentacam in ectopia lentis patients. Int J Ophthalmol 13:1244–1249. https://doi.org/10.18240/ijo.2020.08.10
doi: 10.18240/ijo.2020.08.10 pubmed: 32821678 pmcid: 7387898
Zhang T, Zhou Y, Young CA, Chen A, Jin G, Zheng D (2020) Comparison of a new swept-source anterior segment optical coherence tomography and a Scheimpflug camera for measurement of corneal curvature. Cornea 39:818–822. https://doi.org/10.1097/ICO.0000000000002280
doi: 10.1097/ICO.0000000000002280 pubmed: 32040005
Oh R, Oh JY, Choi HJ, Kim MK, Yoon CH (2021) Comparison of ocular biometric measurements in patients with cataract using three swept-source optical coherence tomography devices. BMC Ophthalmol 21:62. https://doi.org/10.1186/s12886-021-01826-5
doi: 10.1186/s12886-021-01826-5 pubmed: 33504333 pmcid: 7839224
Chalkiadaki E, Gartaganis PS, Ntravalias T, Giannakis I, Manousakis E, Karmiris E (2022) Agreement in anterior segment measurements between swept-source and Scheimpflug-based optical biometries in keratoconic eyes: a pilot study. Ther Adv Ophthalmol 14:25158414211063284. https://doi.org/10.1177/25158414211063283
doi: 10.1177/25158414211063283 pubmed: 35387236 pmcid: 8978314
Park HJ, Lee H, Woo YJ et al (2015) Comparison of the astigmatic power of toric intraocular lenses using three toric calculators. Yonsei Med J 56:1097–1105. https://doi.org/10.3349/ymj.2015.56.4.1097
doi: 10.3349/ymj.2015.56.4.1097 pubmed: 26069135 pmcid: 4479840
Whang WJ, Byun YS, Joo CK (2012) Comparison of refractive outcomes using five devices for the assessment of preoperative corneal power. Clin Exp Ophthalmol 40:425–432. https://doi.org/10.1111/j.1442-9071.2012.02777.x
doi: 10.1111/j.1442-9071.2012.02777.x pubmed: 22394318
Piñero DP, Soto-Negro R, Ruiz-Fortes P, Pérez-Cambrodí RJ, Fukumitsu H (2019) Analysis of intrasession repeatability of ocular aberrometric measurements and validation of keratometry provided by a new integrated system in mild to moderate keratoconus. Cornea 38:1097–1104. https://doi.org/10.1097/ICO.0000000000002034
doi: 10.1097/ICO.0000000000002034 pubmed: 31246681
Ferreira TB, Ribeiro F (2020) How can we improve toric intraocular lens calculation methods? Current insights. Clin Ophthalmol 14:1899–1908. https://doi.org/10.2147/OPTH.S238686
doi: 10.2147/OPTH.S238686 pubmed: 32753834 pmcid: 7352452
Mazur R, Wylęgała A, Wylęgała E, Dobrowolski D (2023) Comparative analysis of corneal parameters performed with GalileiG6 and OCT Casia 2. Diagnostics (Basel) 13:267. https://doi.org/10.3390/diagnostics13020267
doi: 10.3390/diagnostics13020267 pubmed: 36673077
Molebny VV, Panagopoulou SI, Molebny SV, Wakil YS, Pallikaris IG (2000) Principles of ray tracing aberrometry. J Refract Surg 16(5):S572–S575. https://doi.org/10.3928/1081-597X-20000901-17
doi: 10.3928/1081-597X-20000901-17 pubmed: 11019876
Kanclerz P, Khoramnia R, Wang X (2021) Current developments in corneal topography and tomography. Diagnostics (Basel) 11(8):1466. https://doi.org/10.3390/diagnostics11081466
doi: 10.3390/diagnostics11081466 pubmed: 34441401
Sharma A, Batra A (2021) Assessment of precision of astigmatism measurements taken by a sweptsource optical coherence tomography biometer - IOLMaster 700. Indian J Ophthalmol 69:1760–1765. https://doi.org/10.4103/ijo.IJO_2776_20
doi: 10.4103/ijo.IJO_2776_20 pubmed: 34146024 pmcid: 8374785

Auteurs

Shan Ma (S)

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300380, China.
Weifang Eye Hospital, National Key Clinical Specialty, Zhengda Guangming Eye Group, Weifang, 261000, China.
Weifang Eye Institute, Weifang, 261000, China.

Rongyu Gao (R)

Weifang Eye Hospital, National Key Clinical Specialty, Zhengda Guangming Eye Group, Weifang, 261000, China.
Weifang Eye Institute, Weifang, 261000, China.

Jing Sun (J)

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300380, China.

Jun Yang (J)

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300380, China.

Kai Wen (K)

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300380, China.

Xiteng Chen (X)

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300380, China.

Fangyu Zhao (F)

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300380, China.

Xinyan Xu (X)

Weifang Eye Hospital, National Key Clinical Specialty, Zhengda Guangming Eye Group, Weifang, 261000, China. zczdgmykyy2353@163.com.
Weifang Eye Institute, Weifang, 261000, China. zczdgmykyy2353@163.com.

Fang Tian (F)

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300380, China. tianfang1216@126.com.

Classifications MeSH