Automated identification of protein expression intensity and classification of protein cellular locations in mouse brain regions from immunofluorescence images.

Bioimage informatics Cellular location Immunofluorescence image Mouse brain Protein expression

Journal

Medical & biological engineering & computing
ISSN: 1741-0444
Titre abrégé: Med Biol Eng Comput
Pays: United States
ID NLM: 7704869

Informations de publication

Date de publication:
Apr 2024
Historique:
received: 30 03 2023
accepted: 28 11 2023
pubmed: 27 12 2023
medline: 27 12 2023
entrez: 27 12 2023
Statut: ppublish

Résumé

Knowledge of protein expression in mammalian brains at regional and cellular levels can facilitate understanding of protein functions and associated diseases. As the mouse brain is a typical mammalian brain considering cell type and structure, several studies have been conducted to analyze protein expression in mouse brains. However, labeling protein expression using biotechnology is costly and time-consuming. Therefore, automated models that can accurately recognize protein expression are needed. Here, we constructed machine learning models to automatically annotate the protein expression intensity and cellular location in different mouse brain regions from immunofluorescence images. The brain regions and sub-regions were segmented through learning image features using an autoencoder and then performing K-means clustering and registration to align with the anatomical references. The protein expression intensities for those segmented structures were computed on the basis of the statistics of the image pixels, and patch-based weakly supervised methods and multi-instance learning were used to classify the cellular locations. Results demonstrated that the models achieved high accuracy in the expression intensity estimation, and the F1 score of the cellular location prediction was 74.5%. This work established an automated pipeline for analyzing mouse brain images and provided a foundation for further study of protein expression and functions.

Identifiants

pubmed: 38150111
doi: 10.1007/s11517-023-02985-x
pii: 10.1007/s11517-023-02985-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1105-1119

Subventions

Organisme : Natural Science Foundation of Guangdong Province
ID : 2022A1515011436
Organisme : Guangzhou Municipal Science and Technology Project
ID : 202102021087

Informations de copyright

© 2023. International Federation for Medical and Biological Engineering.

Références

Ding J, Ji J, Rabow Z, Shen T, Folz J, Brydges CR et al (2021) A metabolome atlas of the aging mouse brain. Nat Commun 12(1):6021. https://doi.org/10.1038/s41467-021-26310-y
doi: 10.1038/s41467-021-26310-y pubmed: 34654818 pmcid: 8519999
Duan L, Liu J, Yin H, Wang W, Liu L, Shen J et al (2022) Dynamic changes in spatiotemporal transcriptome reveal maternal immune dysregulation of autism spectrum disorder. Comput Biol Med 151:106334. https://doi.org/10.1016/j.compbiomed.2022.106334
doi: 10.1016/j.compbiomed.2022.106334 pubmed: 36442276
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C et al (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367(6482):eaay5947. https://doi.org/10.1126/science.aay5947
doi: 10.1126/science.aay5947 pubmed: 32139519
Zellner A, Müller SA, Lindner B, Beaufort N, Rozemuller AJ, Arzberger T et al (2022) Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates. Acta Neuropathol Commun 10(1):1–15
doi: 10.1186/s40478-021-01303-6
Ferreira M, Ventorim R, Almeida E, Silveira S, Silveira W (2021) Protein abundance prediction through machine learning methods. J Mol Biol 433(22):167267
doi: 10.1016/j.jmb.2021.167267 pubmed: 34563548
Wang F, Wei L (2022) Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images. Bioinformatics 38(9):2602–2611
doi: 10.1093/bioinformatics/btac123 pubmed: 35212728
Cong H, Liu H, Chen Y, Cao Y (2020) Self-evoluting framework of deep convolutional neural network for multilocus protein subcellular localization. Med Biol Eng Compu 58:3017–3038
doi: 10.1007/s11517-020-02275-w
Xue Z-Z, Li C, Luo Z-M, Wang S-S, Xu Y-Y (2022) Automated classification of protein expression levels in immunohistochemistry images to improve the detection of cancer biomarkers. BMC Bioinformatics 23(1):470. https://doi.org/10.1186/s12859-022-05015-z
doi: 10.1186/s12859-022-05015-z pubmed: 36348299 pmcid: 9644510
Ouyang W, Winsnes CF, Hjelmare M, Cesnik AJ, Åkesson L, Xu H et al (2019) Analysis of the human protein atlas image classification competition. Nat Methods 16(12):1254–1261. https://doi.org/10.1038/s41592-019-0658-6
doi: 10.1038/s41592-019-0658-6 pubmed: 31780840 pmcid: 6976526
Wang G, Xue M-Q, Shen H-B, Xu Y-Y (2022) Learning protein subcellular localization multi-view patterns from heterogeneous data of imaging, sequence and networks. Briefings in Bioinformatics 23(2):bbab539. https://doi.org/10.1093/bib/bbab539
doi: 10.1093/bib/bbab539 pubmed: 35018423
Xue M-Q, Zhu X-L, Wang G, Xu Y-Y (2022) DULoc: quantitatively unmixing protein subcellular location patterns in immunofluorescence images based on deep learning features. Bioinformatics 38(3):827–833. https://doi.org/10.1093/bioinformatics/btab730
doi: 10.1093/bioinformatics/btab730 pubmed: 34694372
Giacopelli G, Migliore M, Tegolo D (2023) NeuronAlg: an innovative neuronal computational model for immunofluorescence image segmentation. Sensors 23(10):4598. https://doi.org/10.3390/s23104598
doi: 10.3390/s23104598 pubmed: 37430509 pmcid: 10223721
Goubran M, Leuze C, Hsueh B, Aswendt M, Ye L, Tian Q et al (2019) Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat Commun 10(1):5504. https://doi.org/10.1038/s41467-019-13374-0
doi: 10.1038/s41467-019-13374-0 pubmed: 31796741 pmcid: 6890789
Li Y, Zhang Q, Zhou H, Li J, Li X, Li A (2023) Cerebrovascular segmentation from mesoscopic optical images using Swin Transformer. J Innov Opt Health Sci 2350009. https://doi.org/10.1142/S1793545823500098
Digre A, Lindskog C (2021) The human protein atlas—spatial localization of the human proteome in health and disease. Protein Sci 30(1):218–233
doi: 10.1002/pro.3987 pubmed: 33146890
Tyson AL, Margrie TW (2022) Mesoscale microscopy and image analysis tools for understanding the brain. Prog Biophys Mol Biol 168:81–93. https://doi.org/10.1016/j.pbiomolbio.2021.06.013
doi: 10.1016/j.pbiomolbio.2021.06.013 pubmed: 34216639 pmcid: 8786668
Agarwal N, Xu X, Gopi M (2018) Geometry processing of conventionally produced mouse brain slice images. J Neurosci Methods 306:45–56. https://doi.org/10.1016/j.jneumeth.2018.04.008
doi: 10.1016/j.jneumeth.2018.04.008 pubmed: 29689283 pmcid: 6086593
Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36. https://doi.org/10.1016/S1361-8415(01)80026-8
doi: 10.1016/S1361-8415(01)80026-8 pubmed: 10638851
Ni H, Tan C, Feng Z, Chen S, Zhang Z, Li W et al (2020) A robust image registration interface for large volume brain atlas. Sci Rep 10(1):2139. https://doi.org/10.1038/s41598-020-59042-y
doi: 10.1038/s41598-020-59042-y pubmed: 32034219 pmcid: 7005806
Hirai R, Mori S, Suyari H, Tsuji H, Ishikawa H (2023) Optimizing 3DCT image registration for interfractional changes in carbon-ion prostate radiotherapy. Sci Rep 13(1):7448. https://doi.org/10.1038/s41598-023-34339-w
doi: 10.1038/s41598-023-34339-w pubmed: 37156901 pmcid: 10167266
Chen Z, Zheng Y, Gee JC (2023) TransMatch: a transformer-based multilevel dual-stream feature matching network for unsupervised deformable image registration. IEEE Trans Med Imaging 1–1. https://doi.org/10.1109/TMI.2023.3288136
Toki MI, Cecchi F, Hembrough T, Syrigos KN, Rimm DL (2017) Proof of the quantitative potential of immunofluorescence by mass spectrometry. Lab Invest 97(3):329–334
doi: 10.1038/labinvest.2016.148 pubmed: 28092364 pmcid: 5334147
Pécot T, Cuitiño MC, Johnson RH, Timmers C, Leone G (2022) Deep learning tools and modeling to estimate the temporal expression of cell cycle proteins from 2D still images. PLoS Comput Biol 18(3):e1009949
doi: 10.1371/journal.pcbi.1009949 pubmed: 35286300 pmcid: 8947602
De León Rodríguez SG, Hernández Herrera P, Aguilar Flores C, Pérez Koldenkova V, Guerrero A, Mantilla A et al (2022) A machine learning workflow of multiplexed immunofluorescence images to interrogate activator and tolerogenic profiles of conventional type 1 dendritic cells infiltrating melanomas of disease-free and metastatic patients. J Oncol 2022:9775736
doi: 10.1155/2022/9775736 pubmed: 36276271 pmcid: 9581597
Fang K, Li C, Wang J (2023) An automatic immunofluorescence pattern classification framework for HEp-2 image based on supervised learning. Brief Bioinform 24(3):bbad144. https://doi.org/10.1093/bib/bbad144
doi: 10.1093/bib/bbad144 pubmed: 37088980
Yang Y, Tu Y, Lei H, Long W (2023) HAMIL: hierarchical aggregation-based multi-instance learning for microscopy image classification. Pattern Recogn 136:109245. https://doi.org/10.1016/j.patcog.2022.109245
doi: 10.1016/j.patcog.2022.109245
Abdi IY, Bartl M, Dakna M, Abdesselem H, Majbour N, Trenkwalder C et al (2023) Cross-sectional proteomic expression in Parkinson’s disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up. Neurobiol Dis 177:105997. https://doi.org/10.1016/j.nbd.2023.105997
doi: 10.1016/j.nbd.2023.105997 pubmed: 36634823
Uras I, Karayel-Basar M, Sahin B, Baykal AT (2023) Detection of early proteomic alterations in 5xFAD Alzheimer’s disease neonatal mouse model via MALDI-MSI. Alzheimers Dement 19(10):4572–4589
Taguchi K, Watanabe Y, Tsujimura A, Tanaka M (2019) Expression of alpha-synuclein is regulated in a neuronal cell type-dependent manner. Anat Sci Int 94(1):11–22. https://doi.org/10.1007/s12565-018-0464-8
doi: 10.1007/s12565-018-0464-8 pubmed: 30362073
Zahid S, Oellerich M, Asif AR, Ahmed N (2014) Differential expression of proteins in brain regions of Alzheimer’s Disease Patients. Neurochem Res 39(1):208–215. https://doi.org/10.1007/s11064-013-1210-1
doi: 10.1007/s11064-013-1210-1 pubmed: 24306222
Feng Y, Zhang L, Mo J (2020) Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/ACM Trans Comput Biol Bioinform 17(1):91–101. https://doi.org/10.1109/TCBB.2018.2858763
doi: 10.1109/TCBB.2018.2858763 pubmed: 30040652
Karim MR, Beyan O, Zappa A, Costa IG, Rebholz-Schuhmann D, Cochez M et al (2021) Deep learning-based clustering approaches for bioinformatics. Brief Bioinform 22(1):393–415. https://doi.org/10.1093/bib/bbz170
doi: 10.1093/bib/bbz170 pubmed: 32008043
Wang C-W, Ka S-M, Chen A (2014) Robust image registration of biological microscopic images. Sci Rep 4(1):1–12
Agarwal N, Xu X, Gopi M (2016) Robust registration of mouse brain slices with severe histological artifacts. Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing p. 1–8
Kindle LM, Kakadiaris IA, Ju T, Carson JP (2011) A semiautomated approach for artefact removal in serial tissue cryosections. J Microsc 241(2):200–206
doi: 10.1111/j.1365-2818.2010.03424.x pubmed: 21118219
Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. https://doi.org/10.1109/34.121791
doi: 10.1109/34.121791
Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N et al (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18(12):1819–1831
doi: 10.1038/nn.4160 pubmed: 26523646 pmcid: 7116867
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016) Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:160605718
Frade J, Pereira T, Morgado J, Silva F, Freitas C, Mendes J et al (2022) Multiple instance learning for lung pathophysiological findings detection using CT scans. Med Biol Eng Compu 60(6):1569–1584. https://doi.org/10.1007/s11517-022-02526-y
doi: 10.1007/s11517-022-02526-y
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556
Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH (2016) Patch-based convolutional neural network for whole slide tissue image classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p. 2424–2433
Wang X, Chen H, Gan C, Lin H, Dou Q, Tsougenis E et al (2020) Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans Cybern 50(9):3950–3962. https://doi.org/10.1109/TCYB.2019.2935141
doi: 10.1109/TCYB.2019.2935141 pubmed: 31484154
Ilse M, Tomczak J, Welling M (2018) Attention-based deep multiple instance learning. International conference on machine learning: PMLR p. 2127–2136
Su Z, Tavolara TE, Carreno-Galeano G, Lee SJ, Gurcan MN, Niazi MKK (2022) Attention2majority: weak multiple instance learning for regenerative kidney grading on whole slide images. Med Image Anal 79:102462. https://doi.org/10.1016/j.media.2022.102462
doi: 10.1016/j.media.2022.102462 pubmed: 35512532 pmcid: 10382794
Yao J, Zhu X, Jonnagaddala J, Hawkins N, Huang J (2020) Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med Image Anal 65:101789. https://doi.org/10.1016/j.media.2020.101789
doi: 10.1016/j.media.2020.101789 pubmed: 32739769
Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. 2017 IEEE International Conference on Computer Vision (ICCV) p. 2999–3007
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p. 770–778
Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p. 2261–2269
Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. International conference on machine learning: PMLR p. 6105–6114
Sharma H, Zerbe N, Klempert I, Hellwich O, Hufnagl P (2017) Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Comput Med Imaging Graph 61:2–13
doi: 10.1016/j.compmedimag.2017.06.001 pubmed: 28676295
Xu Y-Y, Yang F, Zhang Y, Shen H-B (2015) Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Bioinformatics 31(7):1111–1119
doi: 10.1093/bioinformatics/btu772 pubmed: 25414362
Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004. https://doi.org/10.1109/TMI.2003.815867
doi: 10.1109/TMI.2003.815867 pubmed: 12906253
Krstinic D, Braović M, Šerić L, Božić-Štulić D (2020) Multi-label classifier performance evaluation with confusion matrix. Comput Sci Inform Technol 10:1
Zhu X-L, Bao L-X, Xue M-Q, Xu Y-Y (2023) Automatic recognition of protein subcellular location patterns in single cells from immunofluorescence images based on deep learning. Brief Bioinform 24(1):bbac609. https://doi.org/10.1093/bib/bbac609
doi: 10.1093/bib/bbac609 pubmed: 36577448
Stadler C, Rexhepaj E, Singan VR, Murphy RF, Pepperkok R, Uhlén M et al (2013) Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods 10(4):315–323. https://doi.org/10.1038/nmeth.2377
doi: 10.1038/nmeth.2377 pubmed: 23435261
Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H et al (2017) A subcellular map of the human proteome. Science 356(6340):eaal3321
doi: 10.1126/science.aal3321 pubmed: 28495876
Tu Y, Lei H, Shen H-B, Yang Y (2022) SIFLoc: a self-supervised pre-training method for enhancing the recognition of protein subcellular localization in immunofluorescence microscopic images. Briefings in Bioinformatics 23(2):bbab605. https://doi.org/10.1093/bib/bbab605
doi: 10.1093/bib/bbab605 pubmed: 35152293
Long W, Yang Y, Shen H-B (2020) ImPLoc: a multi-instance deep learning model for the prediction of protein subcellular localization based on immunohistochemistry images. Bioinformatics 36(7):2244–2250. https://doi.org/10.1093/bioinformatics/btz909
doi: 10.1093/bioinformatics/btz909 pubmed: 31804670
Nanni L, Paci M, Brahnam S, Lumini A (2022) Feature transforms for image data augmentation. Neural Comput Appl 34(24):22345–22356. https://doi.org/10.1007/s00521-022-07645-z
doi: 10.1007/s00521-022-07645-z
Nanni L, Paci M, Brahnam S, Lumini A (2021) Comparison of different image data augmentation approaches. J Imaging 7(12):254
doi: 10.3390/jimaging7120254 pubmed: 34940721 pmcid: 8707550

Auteurs

Lin-Xia Bao (LX)

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China.
Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China.

Zhuo-Ming Luo (ZM)

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China.
Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China.

Xi-Liang Zhu (XL)

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China.
Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China.

Ying-Ying Xu (YY)

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China. yyxu@smu.edu.cn.
Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China. yyxu@smu.edu.cn.
Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China. yyxu@smu.edu.cn.

Classifications MeSH