Computerized Three-Dimensional Analysis: A Novel Method to Assess the Effect of Open-Door Laminoplasty.
CAD-CAM
Cervical spondylotic myelopathy
Computer-guided surgery
Open-door laminoplasty
Spinal canal volume
Journal
Acta neurochirurgica. Supplement
ISSN: 0065-1419
Titre abrégé: Acta Neurochir Suppl
Pays: Austria
ID NLM: 100962752
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
28
12
2023
pubmed:
28
12
2023
entrez:
28
12
2023
Statut:
ppublish
Résumé
The three-dimensional elaboration of morphological data derived from computed tomography (CT) and magnetic resonance imaging (MRI) scans generates virtual anatomical reconstructions. Here, we propose a novel protocol to analyze the postoperative results of open-door laminoplasty to evaluate differences in the volume of the spinal canal. The protocol uses geometric models in patients with cervical degenerative myelopathy before versus after cervical laminoplasty. Mimics and 3-Matic software (Materialise, Leuven, BE) programs were used to segment anatomical structures and create polygon meshes of spines. Patients with cervical spondylotic myelopathy were enrolled. The models obtained before and after laminoplasty were superimposed by using a global registration function. The magnitude of divergence was quantified by using the root-mean-square error (RMSE). Using this novel protocol, we were able to map the differences in the volume of the spinal canal before laminoplasty and after laminoplasty and to quantify its magnitude and calculate the volumes. The development of a procedure to measure the space within the cervical bone walls using geometric parameters represents a new, powerful method to verify the results obtained by cervical laminoplasty. Further research horizons may include the routine use of virtual models in surgical planning for this procedure.
Identifiants
pubmed: 38153485
doi: 10.1007/978-3-031-36084-8_46
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
301-306Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Izatt MT, Thorpe PL, Thompson RG, D’Urso PS, Adam CJ, Earwaker JW, Labrom RD, Askin GN. The use of physical biomodelling in complex spinal surgery. Eur Spine J. 2007;16(9):1507.
doi: 10.1007/s00586-006-0289-3
pubmed: 17846803
pmcid: 2200746
Paiva WS, Amorim R, Bezerra DA, Masini M. Aplication of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr. 2007;65(2b):443–5.
doi: 10.1590/S0004-282X2007000300015
pubmed: 17665012
Yamazaki M, Okawa A, Akazawa T, Koda M. Usefulness of 3-dimensional full-scale modeling for preoperative simulation of surgery in a patient with old unilateral cervical fracture-dislocation. Spine. 2007;32(18):E532–6.
doi: 10.1097/BRS.0b013e318133fcdf
pubmed: 17700435
Dietrich CA, Scheidegger CE, Schreiner J, Comba JL, Nedel LP, Silva CT. Edge trans- formations for improving mesh quality of marching cubes. IEEE Trans Vis Comput Graph. 2009;15(1):150–9.
doi: 10.1109/TVCG.2008.60
pubmed: 19008562
Tolhuisen ML, de Jong GA, van Damme RJM, van der Heijden F, Delye HHK. Cranial shape comparison for automated objective 3D craniosynostosis surgery planning. Sci Rep. 2018;8(1):3349.
doi: 10.1038/s41598-018-21662-w
pubmed: 29463840
pmcid: 5820255
Hirabayashi K, Watanabe K, Wakano K, et al. Expansive open-door laminoplasty for cervical spinal stenotic myelopathy. Spine. 1983;8:693–9.
doi: 10.1097/00007632-198310000-00003
pubmed: 6420895
Badhiwala JH, Wilson JR. The natural history of degenerative cervical myelopathy. Neurosurg Clin N Am. 2018;29:21–32.
doi: 10.1016/j.nec.2017.09.002
pubmed: 29173433
Fehlings MG, Tetreault LA, Riew KD, Middleton JW, Wang JC. A clinical practice guideline for the management of degenerative cervical myelopathy: introduction, rationale, and scope. Global Spine J. 2017;7(3_Suppl):21S–7S.
doi: 10.1177/2192568217703088
pubmed: 29164027
pmcid: 5684844
Cho SK, Kim JS, Overley SC, Merrill RK. Cervical laminoplasty: indications, surgical considerations, and clinical outcomes. J Am Acad Orthop Surg. 2018;26(7):e142–52.
doi: 10.5435/JAAOS-D-16-00242
pubmed: 29521698
Itoh T, Tsuji H. Technical improvements and results of laminoplasty for compressive myelopathy in the cervical spine. Spine. 1985;10:729–36.
doi: 10.1097/00007632-198510000-00007
pubmed: 3909451
Gu Z, Zhang A, Shen Y. Relationship between the laminoplasty opening size and the laminoplasty opening angle, increased sagittal canal diameter and the prediction of spinal canal expansion following open-door cervical laminoplasty. Eur Spine J. 2015;24:1613–20.
doi: 10.1007/s00586-015-3779-3
pubmed: 25628021
Hamburger C, Buttner A, Uhl E. The cross-sectional area of the cervical spinal canal in patients with cervical spondylotic myelopathy: correlation of preoperative and postoperative area with clinical symptoms. Spine. 1997;22:1990–4.
doi: 10.1097/00007632-199709010-00009
pubmed: 9306528
Kohno K, Kumon Y, Oka Y, Matsui S, Ohue S, Sakaki S. Evaluation of prognostic factors following expansive laminoplasty for cervical spinal stenotic myelopathy. Surg Neurol. 1997;48(3):237–45.
doi: 10.1016/S0090-3019(97)00166-3
pubmed: 9290710
Dong F, Shen C, Jiang S. Measurement of volume-occupying rate of cervical spinal canal and its role in cervical spondylotic myelopathy. Eur Spine J. 2013;22:1152–7.
doi: 10.1007/s00586-012-2622-3
pubmed: 23291855
pmcid: 3657067
Wang H, Zhang L. Expansion of spinal canal with lift-open Laminoplasty: a new method for compression cervical myelopathy. Orthop Surg. 2021;13(5):1673–81.
doi: 10.1111/os.13026
pubmed: 34109741
pmcid: 8313177
Baba H, Uchida K, Maezawa Y, Furusawa N, Wada M, Imura S. Three-dimensional computed tomography for evaluation of cervical spinal canal enlargement after en bloc open-door laminoplasty. Spinal Cord. 1997;35(10):674–9.
doi: 10.1038/sj.sc.3100473
pubmed: 9347596
Hernández-Durán S, Zafar N, Behme D, et al. Volumetric analysis of bilateral spinal canal decompression via hemilaminectomy versus laminoplasty in cervical spondylotic myelopathy. Acta Neurochir. 2020;162:2069–74.
doi: 10.1007/s00701-020-04453-z
pubmed: 32583084
Burnard JL, Parr WC, Choy WJ, Walsh WR, Mobbs RJ. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur Spine J. 2020;29(6):1248–60.
doi: 10.1007/s00586-019-06236-2
pubmed: 31797140
Garg B, Mehta N. Current status of 3D printing in spine surgery. J Clin Orthop Trauma. 2018;9(3):218–25.
doi: 10.1016/j.jcot.2018.08.006
pubmed: 30202152
pmcid: 6128322
D’Urso PS, Askin G, Earwaker JS. Spinal biomodeling. Spine. 1999;24(12):1247.
doi: 10.1097/00007632-199906150-00013
pubmed: 10382253
Zhang C, Feng Y, Yan X, Yang T, Shao C, Shang L, Zhao X. 3D printed guiding device assisted bilateral crossing cervical microendoscopic laminoplasty for cervical spondylotic myelopathy: a study protocol for a randomized controlled trial. PREPRINT (Version 1) available at Research Square; 2019. https://doi.org/10.21203/rs.2.12206/v1 .
Ling Q, He E, Ouyang H, Guo J, Yin Z, Huang W. Design of mulitlevel OLF approach (“V”-shaped decompressive laminoplasty) based on 3D printing technology. Eur Spine J. 2018;27(Suppl 3):323–9.
doi: 10.1007/s00586-017-5234-0
pubmed: 28752243
Baba H, Uchida K, Maezawa Y, Furusawa N, Azuchi M, Imura S. Lordotic alignment and posterior migration of the spinal cord following en bloc open-door laminoplasty for cervical myelopathy: a magnetic resonance imaging study. J Neurol. 1996;243:626–63.
doi: 10.1007/BF00878657
pubmed: 8892062