The applications of CRISPR/Cas-mediated microRNA and lncRNA editing in plant biology: shaping the future of plant non-coding RNA research.

CRISPR/Cas9 Genome editing Non-coding RNAs Plant improvement lncRNAs microRNAs

Journal

Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576

Informations de publication

Date de publication:
28 Dec 2023
Historique:
received: 28 05 2023
accepted: 25 11 2023
medline: 28 12 2023
pubmed: 28 12 2023
entrez: 28 12 2023
Statut: epublish

Résumé

CRISPR/Cas technology has greatly facilitated plant non-coding RNA (ncRNA) biology research, establishing itself as a promising tool for ncRNA functional characterization and ncRNA-mediated plant improvement. Throughout the last decade, the promising genome editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas; CRISPR/Cas) has allowed unprecedented advances in the field of plant functional genomics and crop improvement. Even though CRISPR/Cas-mediated genome editing system has been widely used to elucidate the biological significance of a number of plant protein-coding genes, this technology has been barely applied in the functional analysis of those non-coding RNAs (ncRNAs) that modulate gene expression, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Nevertheless, compelling findings indicate that CRISPR/Cas-based ncRNA editing has remarkable potential for deciphering the biological roles of ncRNAs in plants, as well as for plant breeding. For instance, it has been demonstrated that CRISPR/Cas tool could overcome the challenges associated with other approaches employed in functional genomic studies (e.g., incomplete knockdown and off-target activity). Thus, in this review article, we discuss the current status and progress of CRISPR/Cas-mediated ncRNA editing in plant science in order to provide novel prospects for further assessment and validation of the biological activities of plant ncRNAs and to enhance the development of ncRNA-centered protocols for crop improvement.

Identifiants

pubmed: 38153530
doi: 10.1007/s00425-023-04303-z
pii: 10.1007/s00425-023-04303-z
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

32

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Ahmad M (2023) Plant breeding advancements with “CRISPR-Cas” genome editing technologies will assist future food security. Front Plant Sci 14:1133036. https://doi.org/10.3389/fpls.2023.1133036
doi: 10.3389/fpls.2023.1133036 pubmed: 36993865 pmcid: 10040607
Ahmad S, Tang L, Shahzad R et al (2021) CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger. J Agric Food Chem 69:8307–8323. https://doi.org/10.1021/acs.jafc.1c02653
doi: 10.1021/acs.jafc.1c02653 pubmed: 34288688
Ali Z, Rai SK, Jan S, Raina K (2022) An assessment on CRISPR Cas as a novel asset in mitigating drought stress. Genet Resour Crop Evol 69:2011–2027. https://doi.org/10.1007/s10722-022-01364-z
doi: 10.1007/s10722-022-01364-z
Anand A, Pandi G (2021) Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions. Life 11:49. https://doi.org/10.3390/life11010049
doi: 10.3390/life11010049 pubmed: 33450961 pmcid: 7828403
Arazi T, Khedia J (2022) Tomato MicroRNAs and Their Functions. Int J Mol Sci 23:11979. https://doi.org/10.3390/ijms231911979
doi: 10.3390/ijms231911979 pubmed: 36233279 pmcid: 9569937
Baldrich P, Liu A, Meyers BC, Fondong VN (2022) An atlas of small RNAs from potato. Plant Direct 6:e466. https://doi.org/10.1002/pld3.466
doi: 10.1002/pld3.466 pubmed: 36530592 pmcid: 9751654
Bandyopadhyay A, Kancharla N, Javalkote VS et al (2020) CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement. Front Plant Sci 11:584151. https://doi.org/10.3389/fpls.2020.584151
doi: 10.3389/fpls.2020.584151 pubmed: 33214794 pmcid: 7668199
Basak J, Nithin C (2015) Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting. Front Plant Sci 6:1001. https://doi.org/10.3389/fpls.2015.01001
doi: 10.3389/fpls.2015.01001 pubmed: 26635829 pmcid: 4652605
Basso MF, Ferreira PCG, Kobayashi AK et al (2019) MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J 17:1482–1500. https://doi.org/10.1111/pbi.13116
doi: 10.1111/pbi.13116 pubmed: 30947398 pmcid: 6662102
Bhattacharjee B, Hallan V (2022) Geminivirus-Derived Vectors as Tools for Functional Genomics. Front Microbiol 13:799345. https://doi.org/10.3389/fmicb.2022.799345
doi: 10.3389/fmicb.2022.799345 pubmed: 35432267 pmcid: 9010885
Bhogireddy S, Mangrauthia SK, Kumar R et al (2021) Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct Integr Genomics 21:313–330. https://doi.org/10.1007/s10142-021-00787-8
doi: 10.1007/s10142-021-00787-8 pubmed: 34013486 pmcid: 8298231
Bi H, Fei Q, Li R et al (2020) Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production. Plant Biotechnol J 18:1526–1536. https://doi.org/10.1111/pbi.13315
doi: 10.1111/pbi.13315 pubmed: 31821678
Bravo-Vázquez LA, Srivastava A, Bandyopadhyay A, Paul S (2022) The elusive roles of chloroplast microRNAs: an unexplored facet of the plant transcriptome. Plant Mol Biol 109:667–671. https://doi.org/10.1007/s11103-022-01279-4
doi: 10.1007/s11103-022-01279-4 pubmed: 35614291
Cai Q, Guo D, Cao Y et al (2022) Application of CRISPR/CasΦ2 System for Genome Editing in Plants. Int J Mol Sci 23:5755. https://doi.org/10.3390/ijms23105755
doi: 10.3390/ijms23105755 pubmed: 35628563 pmcid: 9147844
Calvache C, Vazquez-Vilar M, Selma S et al (2022) Strong and tunable anti-CRISPR/Cas activities in plants. Plant Biotechnol J 20:399–408. https://doi.org/10.1111/pbi.13723
doi: 10.1111/pbi.13723 pubmed: 34632687
Campo S, Sánchez-Sanuy F, Camargo-Ramírez R et al (2021) A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. Plant Biotechnol J 19:1798–1811. https://doi.org/10.1111/pbi.13592
doi: 10.1111/pbi.13592 pubmed: 33780108 pmcid: 8428829
Chand Jha U, Nayyar H, Mantri N, Siddique KHM (2021) Non-Coding RNAs in Legumes: Their Emerging Roles in Regulating Biotic/Abiotic Stress Responses and Plant Growth and Development. Cells 10:1674. https://doi.org/10.3390/cells10071674
doi: 10.3390/cells10071674 pubmed: 34359842 pmcid: 8306516
Chao H, Hu Y, Zhao L et al (2022) Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 23:3695. https://doi.org/10.3390/ijms23073695
doi: 10.3390/ijms23073695 pubmed: 35409060 pmcid: 8998614
Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu Rev Plant Biol 70:667–697. https://doi.org/10.1146/annurev-arplant-050718-100049
doi: 10.1146/annurev-arplant-050718-100049 pubmed: 30835493
Chen L, Zhu QH, Kaufmann K (2020) Long non-coding RNAs in plants: emerging modulators of gene activity in development and stress responses. Planta 252:92. https://doi.org/10.1007/s00425-020-03480-5
doi: 10.1007/s00425-020-03480-5 pubmed: 33099688 pmcid: 7585572
Chen Z, Li Y, Li P et al (2021) MircroRNA Profiles of Early Rice Inflorescence Revealed a Specific miRNA5506 Regulating Development of Floral Organs and Female Megagametophyte in Rice. Int J Mol Sci 22:6610. https://doi.org/10.3390/ijms22126610
doi: 10.3390/ijms22126610 pubmed: 34205521 pmcid: 8235126
Chen J, Li S, He Y et al (2022a) An update on precision genome editing by homology-directed repair in plants. Plant Physiol 188:1780–1794. https://doi.org/10.1093/plphys/kiac037
doi: 10.1093/plphys/kiac037 pubmed: 35238390 pmcid: 8968426
Chen K, Ke R, Du M et al (2022b) A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Mol Plant 15:243–257. https://doi.org/10.1016/j.molp.2021.09.015
doi: 10.1016/j.molp.2021.09.015 pubmed: 34619328
Chincinska IA, Miklaszewska M, Sołtys-Kalina D (2023) Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. Planta 257:25. https://doi.org/10.1007/s00425-022-04054-3
doi: 10.1007/s00425-022-04054-3
Chung PJ, Chung H, Oh N et al (2020) Efficiency of Recombinant CRISPR/rCas9-Mediated miRNA Gene Editing in Rice. Int J Mol Sci 21:9606. https://doi.org/10.3390/ijms21249606
doi: 10.3390/ijms21249606 pubmed: 33339449 pmcid: 7766165
Cunningham FJ, Goh NS, Demirer GS et al (2018) Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends Biotechnol 36:882–897. https://doi.org/10.1016/j.tibtech.2018.03.009
doi: 10.1016/j.tibtech.2018.03.009 pubmed: 29703583 pmcid: 10461776
Damodharan S, Corem S, Gupta SK, Arazi T (2018) Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J 96:855–868. https://doi.org/10.1111/tpj.14073
doi: 10.1111/tpj.14073 pubmed: 30144341
Demirer GS, Silva TN, Jackson CT et al (2021) Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nat Nanotechnol 16:243–250. https://doi.org/10.1038/s41565-021-00854-y
doi: 10.1038/s41565-021-00854-y pubmed: 33712738 pmcid: 10461802
Deng F, Zeng F, Shen Q et al (2022) Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends Plant Sci 27:890–907. https://doi.org/10.1016/j.tplants.2022.01.009
doi: 10.1016/j.tplants.2022.01.009 pubmed: 35165036
Din M, Barozai MYK (2014) Profiling microRNAs and their targets in an important fleshy fruit: Tomato (Solanum lycopersicum). Gene 535:198–203. https://doi.org/10.1016/j.gene.2013.11.034
doi: 10.1016/j.gene.2013.11.034 pubmed: 24315821
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional Roles of microRNAs in Agronomically Important Plants—Potential as Targets for Crop Improvement and Protection. Front Plant Sci 8:378. https://doi.org/10.3389/fpls.2017.00378
doi: 10.3389/fpls.2017.00378 pubmed: 28382044 pmcid: 5360763
Do PT, Nguyen CX, Bui HT et al (2019) Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol 19:311. https://doi.org/10.1186/s12870-019-1906-8
doi: 10.1186/s12870-019-1906-8 pubmed: 31307375 pmcid: 6632005
Dong OX (2020) Gene Replacement and Knockin Made Easy in Plants. Mol Plant 13:1104. https://doi.org/10.1016/j.molp.2020.07.015
doi: 10.1016/j.molp.2020.07.015
Dong Q, Hu B, Zhang C (2022) microRNAs and Their Roles in Plant Development. Front Plant Sci 13:824240. https://doi.org/10.3389/fpls.2022.824240
doi: 10.3389/fpls.2022.824240 pubmed: 35251094 pmcid: 8895298
Dunbar T, Tsakirpaloglou N, Septiningsih EM, Thomson MJ (2022) Carbon Nanotube-Mediated Plasmid DNA Delivery in Rice Leaves and Seeds. Int J Mol Sci 23:4081. https://doi.org/10.3390/ijms23084081
doi: 10.3390/ijms23084081 pubmed: 35456898 pmcid: 9028948
Eamens AL, Wang MB (2011) Alternate approaches to repress endogenous microRNA activity in Arabidopsis thaliana. Plant Signal Behav 6:349–359. https://doi.org/10.4161/psb.6.3.14340
doi: 10.4161/psb.6.3.14340 pubmed: 21358288 pmcid: 3142414
Eid A, Mohan C, Sanchez S et al (2021) Multiallelic, Targeted Mutagenesis of Magnesium Chelatase With CRISPR/Cas9 Provides a Rapidly Scorable Phenotype in Highly Polyploid Sugarcane. Front Genome Ed 3:654996. https://doi.org/10.3389/fgeed.2021.654996
doi: 10.3389/fgeed.2021.654996 pubmed: 34713257 pmcid: 8525377
Eini O, Schumann N, Niessen M, Varrelmann M (2022) Targeted mutagenesis in plants using Beet curly top virus for efficient delivery of CRISPR/Cas12a components. N Biotechnol 67:1–11. https://doi.org/10.1016/j.nbt.2021.12.002
doi: 10.1016/j.nbt.2021.12.002 pubmed: 34896246
Fiaz S, Ahmad S, Noor MA et al (2019) Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities. Int J Mol Sci 20:888. https://doi.org/10.3390/ijms20040888
doi: 10.3390/ijms20040888 pubmed: 30791357 pmcid: 6412304
Gaillochet C, Develtere W, Jacobs TB (2021) CRISPR screens in plants: Approaches, guidelines, and future prospects. Plant Cell 33:794–813. https://doi.org/10.1093/plcell/koab099
doi: 10.1093/plcell/koab099 pubmed: 33823021 pmcid: 8226290
Galli M, Martiny E, Imani J et al (2022) CRISPR/SpCas9-mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. Plant Biotechnol J 20:89–102. https://doi.org/10.1111/pbi.13697
doi: 10.1111/pbi.13697 pubmed: 34487614
Gao C (2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635. https://doi.org/10.1016/j.cell.2021.01.005
doi: 10.1016/j.cell.2021.01.005 pubmed: 33581057
Gao L, Altae-Tran H, Böhning F et al (2020) Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369:1077–1084. https://doi.org/10.1126/science.aba0372
doi: 10.1126/science.aba0372 pubmed: 32855333 pmcid: 7985843
Gautam H, Sharma A, Trivedi PK (2023) Plant microProteins and miPEPs: Small molecules with much bigger roles. Plant Sci 326:111519. https://doi.org/10.1016/j.plantsci.2022.111519
doi: 10.1016/j.plantsci.2022.111519 pubmed: 36330966
Ghogare R, Ludwig Y, Bueno GM et al (2021) Genome editing reagent delivery in plants. Transgenic Res 30:321–335. https://doi.org/10.1007/s11248-021-00239-w
doi: 10.1007/s11248-021-00239-w pubmed: 33728594
Ghose K, Rai KM (2021) Long noncoding RNAs and their implication in novel trait development in soybean. In: Upadhyay SK (ed) Long Noncoding RNAs in Plants: Roles in Development and Stress. Academic Press, Cambridge, pp 133–150
doi: 10.1016/B978-0-12-821452-7.00009-X
Gu X, Liu L, Zhang H (2021) Transgene-free Genome Editing in Plants. Front Genome Ed 3:805317. https://doi.org/10.3389/fgeed.2021.805317
doi: 10.3389/fgeed.2021.805317 pubmed: 34927134 pmcid: 8678605
Guo X, Rahman JA, Wessels H-H et al (2021) Transcriptome-wide Cas13 guide RNA design for model organisms and viral RNA pathogens. Cell Genomics 1:100001. https://doi.org/10.1016/j.xgen.2021.100001
doi: 10.1016/j.xgen.2021.100001 pubmed: 35664829 pmcid: 9164475
Gupta SK, Vishwakarma A, Kenea HD et al (2021) CRISPR/Cas9 mutants of tomato MICRORNA164 genes uncover their functional specialization in development. Plant Physiol 187:1636–1652. https://doi.org/10.1093/plphys/kiab376
doi: 10.1093/plphys/kiab376 pubmed: 34618074 pmcid: 8566253
Hahn F, Korolev A, Sanjurjo Loures L, Nekrasov V (2020) A modular cloning toolkit for genome editing in plants. BMC Plant Biol 20:179. https://doi.org/10.1186/s12870-020-02388-2
doi: 10.1186/s12870-020-02388-2 pubmed: 32326901 pmcid: 7178738
Hao L, Ruiying Q, Xiaoshuang L et al (2019) CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome. Rice Sci 26:125–128. https://doi.org/10.1016/j.rsci.2018.07.002
doi: 10.1016/j.rsci.2018.07.002
Hassan MM, Zhang Y, Yuan G et al (2021) Construct design for CRISPR/Cas-based genome editing in plants. Trends Plant Sci 26:1133–1152. https://doi.org/10.1016/j.tplants.2021.06.015
doi: 10.1016/j.tplants.2021.06.015 pubmed: 34340931
He Y, Zhu M, Wang L et al (2018) Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants. Mol Plant 11:1210–1213. https://doi.org/10.1016/j.molp.2018.05.005
doi: 10.1016/j.molp.2018.05.005 pubmed: 29857174
He Y, Zhu M, Wang L et al (2019) Improvements of TKC Technology Accelerate Isolation of Transgene-Free CRISPR/Cas9-Edited Rice Plants. Rice Sci 26:109–117. https://doi.org/10.1016/j.rsci.2018.11.001
doi: 10.1016/j.rsci.2018.11.001
He Y, Zhao Y (2020) Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH 1:88–96. https://doi.org/10.1007/s42994-019-00013-x
Hong Y, Meng J, He X et al (2021) Editing miR482b and miR482c Simultaneously by CRISPR/Cas9 Enhanced Tomato Resistance to Phytophthora infestans. Phytopathology 111:1008–1016. https://doi.org/10.1094/PHYTO-08-20-0360-R
doi: 10.1094/PHYTO-08-20-0360-R pubmed: 33258411
Hussain S-RA, Yalvac ME, Khoo B et al (2021) Adapting CRISPR/Cas9 System for Targeting Mitochondrial Genome. Front Genet 12:627050. https://doi.org/10.3389/fgene.2021.627050
doi: 10.3389/fgene.2021.627050 pubmed: 33889176 pmcid: 8055930
Jeena GS, Singh N, Shikha SRK (2022) An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. Plant Cell Rep 41:1651–1671. https://doi.org/10.1007/s00299-022-02877-8
doi: 10.1007/s00299-022-02877-8 pubmed: 35579713
Jiang W, Bush J, Sheen J (2021a) A Versatile and Efficient Plant Protoplast Platform for Genome Editing by Cas9 RNPs. Front Genome Ed 3:719190. https://doi.org/10.3389/fgeed.2021.719190
doi: 10.3389/fgeed.2021.719190 pubmed: 35005700 pmcid: 8729822
Jiang Y, An X, Li Z et al (2021b) CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnol J 19:1769–1784. https://doi.org/10.1111/pbi.13590
doi: 10.1111/pbi.13590 pubmed: 33772993 pmcid: 8428822
Jyothsna S, Nair MM, Alagu M (2023) Regulatory Noncoding RNAs: An Emerging Paradigm for Understanding Phytochemical Biosynthesis and Functioning. In: Swamy MK, Kumar A (eds) Phytochemical Genomics: Plant Metabolomics and Medicinal Plant Genomics. Springer, Singapore, pp 605–626
Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC (2021) CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants 10:2055. https://doi.org/10.3390/plants10102055
doi: 10.3390/plants10102055 pubmed: 34685863 pmcid: 8540305
Karmakar S, Das P, Panda D et al (2022) A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Sci 323:111376. https://doi.org/10.1016/j.plantsci.2022.111376
doi: 10.1016/j.plantsci.2022.111376 pubmed: 35835393
Kong X, Yang M, Le BH et al (2022) The master role of siRNAs in plant immunity. Mol Plant Pathol 23:1565–1574. https://doi.org/10.1111/mpp.13250
doi: 10.1111/mpp.13250 pubmed: 35869407 pmcid: 9452763
Kumar K, Chakraborty S (2021) Roles of long non-coding RNAs in plant virus interactions. J Plant Biochem Biotechnol 30:684–697. https://doi.org/10.1007/s13562-021-00697-7
doi: 10.1007/s13562-021-00697-7
Lakhotia N, Joshi G, Bhardwaj AR, et al (2014) Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biol 14:6. https://doi.org/10.1186/1471-2229-14-6
Lauressergues D, Couzigou JM, Clemente HS et al (2015) Primary transcripts of microRNAs encode regulatory peptides. Nature 520:90–93. https://doi.org/10.1038/nature14346
doi: 10.1038/nature14346 pubmed: 25807486
Lenaerts B, Collard BCY, Demont M (2019) Review: Improving global food security through accelerated plant breeding. Plant Sci 287:110207. https://doi.org/10.1016/j.plantsci.2019.110207
doi: 10.1016/j.plantsci.2019.110207 pubmed: 31481198 pmcid: 6745619
Li M, Li X, Zhou Z et al (2016) Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System. Front Plant Sci 7:377. https://doi.org/10.3389/fpls.2016.00377
doi: 10.3389/fpls.2016.00377 pubmed: 27066031 pmcid: 4811884
Li R, Fu D, Zhu B et al (2018) CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J 94:513–524. https://doi.org/10.1111/tpj.13872
doi: 10.1111/tpj.13872 pubmed: 29446503
Li X, Shahid MQ, Wen M et al (2020) Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice. BMC Plant Biol 20:82. https://doi.org/10.1186/s12870-020-2290-0
doi: 10.1186/s12870-020-2290-0 pubmed: 32075588 pmcid: 7032005
Li S, Chang L, Zhang J (2021) Advancing organelle genome transformation and editing for crop improvement. Plant Commun 2:100141. https://doi.org/10.1016/j.xplc.2021.100141
doi: 10.1016/j.xplc.2021.100141 pubmed: 33898977 pmcid: 8060728
Lian H, Wang L, Ma N et al (2021) Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biol 19:e3001044. https://doi.org/10.1371/journal.pbio.3001044
doi: 10.1371/journal.pbio.3001044 pubmed: 33529193 pmcid: 7853526
Lin X, Lin W, Ku YS et al (2020a) Analysis of Soybean Long Non-Coding RNAs Reveals a Subset of Small Peptide-Coding Transcripts. Plant Physiol 182:1359–1374. https://doi.org/10.1104/pp.19.01324
doi: 10.1104/pp.19.01324 pubmed: 31882456
Lin Y, Zhang L, Zhao Y et al (2020b) Comparative analysis and functional identification of temperature-sensitive miRNA in Arabidopsis anthers. Biochem Biophys Res Commun 532:1–10. https://doi.org/10.1016/j.bbrc.2020.05.033
doi: 10.1016/j.bbrc.2020.05.033 pubmed: 32826059
Lin Y, Zhu Y, Cui Y et al (2021) Derepression of specific miRNA-target genes in rice using CRISPR/Cas9. J Exp Bot 72:7067–7077. https://doi.org/10.1093/jxb/erab336
doi: 10.1093/jxb/erab336 pubmed: 34283216 pmcid: 8547147
Liu H, Zhang B (2020) Virus-Based CRISPR/Cas9 Genome Editing in Plants. Trends Genet 36:810–813. https://doi.org/10.1016/j.tig.2020.08.002
doi: 10.1016/j.tig.2020.08.002 pubmed: 32828551
Liu D, Hu R, Palla KJ et al (2016) Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr Opin Plant Biol 30:70–77. https://doi.org/10.1016/j.pbi.2016.01.007
doi: 10.1016/j.pbi.2016.01.007 pubmed: 26896588
Liu D, Mewalal R, Hu R et al (2017) New technologies accelerate the exploration of non-coding RNAs in horticultural plants. Hortic Res 4:17031. https://doi.org/10.1038/hortres.2017.31
doi: 10.1038/hortres.2017.31 pubmed: 28698797 pmcid: 5496985
Liu Q, Yang F, Zhang J et al (2021) Application of CRISPR/Cas9 in Crop Quality Improvement. Int J Mol Sci 22:4206. https://doi.org/10.3390/ijms22084206
doi: 10.3390/ijms22084206 pubmed: 33921600 pmcid: 8073294
Lowder LG, Zhang D, Baltes NJ et al (2015) A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiol 169:971–985. https://doi.org/10.1104/pp.15.00636
doi: 10.1104/pp.15.00636 pubmed: 26297141 pmcid: 4587453
Lowder LG, Malzahn A, Qi Y (2018) Plant Gene Regulation Using Multiplex CRISPR-dCas9 Artificial Transcription Factors. In: Lagrimini L (ed) Maize. Humana Press, New York, Methods in Molecular Biology, pp 197–214
doi: 10.1007/978-1-4939-7315-6_12
Lu T, Cui L, Zhou Y et al (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076–2087. https://doi.org/10.1261/rna.052282.115
doi: 10.1261/rna.052282.115 pubmed: 26464523 pmcid: 4647462
Luan Y, Wang W, Liu P (2014) Identification and functional analysis of novel and conserved microRNAs in tomato. Mol Biol Rep 41:5385–5394. https://doi.org/10.1007/s11033-014-3410-4
doi: 10.1007/s11033-014-3410-4 pubmed: 24844213
Lukan T, Veillet F, Križnik M, et al (2022) CRISPR/Cas9-mediated fine-tuning of miRNA expression in tetraploid potato. Hortic Res 9:uhac147. https://doi.org/10.1093/hr/uhac147
Ma L, Mu J, Grierson D et al (2020) Noncoding RNAs: functional regulatory factors in tomato fruit ripening. Theor Appl Genet 133:1753–1762. https://doi.org/10.1007/s00122-020-03582-4
doi: 10.1007/s00122-020-03582-4 pubmed: 32211918
Ma X, Zhao F, Zhou B (2022) The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 23:4124. https://doi.org/10.3390/ijms23084124
doi: 10.3390/ijms23084124 pubmed: 35456943 pmcid: 9032736
Maharajan T, Krishna TPA, Rakkammal K et al (2022) Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. Planta 256:106. https://doi.org/10.1007/s00425-022-04023-w
doi: 10.1007/s00425-022-04023-w pubmed: 36326904
Miao C, Wang Z, Zhang L et al (2019) The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nat Commun 10:3822. https://doi.org/10.1038/s41467-019-11830-5
doi: 10.1038/s41467-019-11830-5 pubmed: 31444356 pmcid: 6707268
Miao C, Wang D, He R et al (2020) Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice. Plant Biotechnol J 18:491–501. https://doi.org/10.1111/pbi.13214
doi: 10.1111/pbi.13214 pubmed: 31336020
Miladinovic D, Antunes D, Yildirim K et al (2021) Targeted plant improvement through genome editing: from laboratory to field. Plant Cell Rep 40:935–951. https://doi.org/10.1007/s00299-020-02655-4
doi: 10.1007/s00299-020-02655-4 pubmed: 33475781 pmcid: 8184711
Mubarik MS, Ma C, Majeed S et al (2020) Revamping of Cotton Breeding Programs for Efficient Use of Genetic Resources under Changing Climate. Agronomy 10:1190. https://doi.org/10.3390/agronomy10081190
doi: 10.3390/agronomy10081190
Nadakuduti SS, Enciso-Rodríguez F (2021) Advances in Genome Editing With CRISPR Systems and Transformation Technologies for Plant DNA Manipulation. Front Plant Sci 11:637159. https://doi.org/10.3389/fpls.2020.637159
doi: 10.3389/fpls.2020.637159 pubmed: 33519884 pmcid: 7840963
Natarajan B, Bhogale S, Banerjee AK (2017) The essential role of microRNAs in potato tuber development: a mini review. Indian J Plant Physiol 22:401–410. https://doi.org/10.1007/s40502-017-0324-x
doi: 10.1007/s40502-017-0324-x
Nie H, Wang Y, Su Y, Hua J (2018) Exploration of miRNAs and target genes of cytoplasmic male sterility line in cotton during flower bud development. Funct Integr Genomics 18:457–476. https://doi.org/10.1007/s10142-018-0606-z
doi: 10.1007/s10142-018-0606-z pubmed: 29626311
Niu Q, Wu S, Li Y et al (2020) Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid. J Integr Plant Biol 62:398–402. https://doi.org/10.1111/jipb.12886
doi: 10.1111/jipb.12886 pubmed: 31702097
Niu F, Jiang Q, Sun X et al (2021) Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). Funct Plant Biol 48:1139–1147. https://doi.org/10.1071/FP20400
doi: 10.1071/FP20400 pubmed: 34585661
Park J, Choe S (2019) DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants. Transgenic Res 28:61–64. https://doi.org/10.1007/s11248-019-00136-3
doi: 10.1007/s11248-019-00136-3 pubmed: 31321685
Paul S, Bravo Vázquez LA, Márquez Nafarrate M et al (2021a) The regulatory activities of microRNAs in non-vascular plants: a mini review. Planta 254:57. https://doi.org/10.1007/s00425-021-03707-z
doi: 10.1007/s00425-021-03707-z pubmed: 34424349
Paul S, de la Fuente-Jiménez JL, Manriquez CG, Sharma A (2020) Identification, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs. 3 Biotech 10:25. https://doi.org/10.1007/s13205-019-2000-5
Paul S, Reyes-Pérez P, Angulo-Bejarano PI, et al (2021b) Characterization of microRNAs from neem (Azadirachta indica) and their tissue-specific expression study in leaves and stem. 3 Biotech 11:277. https://doi.org/10.1007/s13205-021-02839-z
Paul S (2017) Identification and characterization of microRNAs and their targets in high-altitude stress-adaptive plant maca (Lepidium meyenii Walp). 3 Biotech 7:103. https://doi.org/10.1007/s13205-017-0734-5
Pauwels L, De Clercq R, Goossens J et al (2018) A Dual sgRNA Approach for Functional Genomics in Arabidopsis thaliana. G3 Genes. Genomes, Genet 8:2603–2615. https://doi.org/10.1534/g3.118.200046
doi: 10.1534/g3.118.200046
Piatek A, Ali Z, Baazim H et al (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589. https://doi.org/10.1111/pbi.12284
doi: 10.1111/pbi.12284 pubmed: 25400128
Puchta H, Jiang J, Wang K, Zhao Y (2022) Updates on gene editing and its applications. Plant Physiol 188:1725–1730. https://doi.org/10.1093/plphys/kiac032
doi: 10.1093/plphys/kiac032 pubmed: 35225345 pmcid: 8968428
Qi W, Zhu T, Tian Z et al (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16:58. https://doi.org/10.1186/s12896-016-0289-2
doi: 10.1186/s12896-016-0289-2 pubmed: 27515683 pmcid: 4982333
Qi Q, Hu B, Jiang W et al (2023) Advances in Plant Epigenome Editing Research and Its Application in Plants. Int J Mol Sci 24:3442. https://doi.org/10.3390/ijms24043442
doi: 10.3390/ijms24043442 pubmed: 36834852 pmcid: 9961165
Ram MK, Mukherjee K, Pandey DM (2019) Identification of miRNA, their targets and miPEPs in peanut (Arachis hypogaea L.). Comput Biol Chem 83:107100. https://doi.org/10.1016/j.compbiolchem.2019.107100
Ramírez Gonzales L, Shi L, Bergonzi SB et al (2021) Potato CYCLING DOF FACTOR 1 and its lncRNA counterpart StFLORE link tuber development and drought response. Plant J 105:855–869. https://doi.org/10.1111/tpj.15093
doi: 10.1111/tpj.15093 pubmed: 33220113 pmcid: 7985872
Razzaq MK, Aleem M, Mansoor S et al (2021) Omics and CRISPR-Cas9 Approaches for Molecular Insight, Functional Gene Analysis, and Stress Tolerance Development in Crops. Int J Mol Sci 22:1292. https://doi.org/10.3390/ijms22031292
doi: 10.3390/ijms22031292 pubmed: 33525517 pmcid: 7866018
Rehman F, Gong H, Bao Y et al (2022) CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement. Plant Mol Biol 108:157–173. https://doi.org/10.1007/s11103-021-01229-6
doi: 10.1007/s11103-021-01229-6 pubmed: 35032250
Romero FM, Gatica-Arias A (2019) CRISPR/Cas9: Development and Application in Rice Breeding. Rice Sci 26:265–281. https://doi.org/10.1016/j.rsci.2019.08.001
doi: 10.1016/j.rsci.2019.08.001
Rozov SM, Permyakova NV, Deineko EV (2019) The Problem of the Low Rates of CRISPR/Cas9-Mediated Knock-ins in Plants: Approaches and Solutions. Int J Mol Sci 20:3371. https://doi.org/10.3390/ijms20133371
doi: 10.3390/ijms20133371 pubmed: 31323994 pmcid: 6651222
Rukavtsova EB, Zakharchenko NS, Lebedev VG, Shestibratov KA (2023) CRISPR-Cas Genome Editing for Horticultural Crops Improvement: Advantages and Prospects. Horticulturae 9:38. https://doi.org/10.3390/horticulturae9010038
doi: 10.3390/horticulturae9010038
Sabzehzari M, Naghavi MR (2019) Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants. Gene 682:13–24. https://doi.org/10.1016/j.gene.2018.09.049
doi: 10.1016/j.gene.2018.09.049 pubmed: 30267812
Sabzehzari M, Zeinali M, Naghavi MR (2020) CRISPR-based metabolic editing: Next-generation metabolic engineering in plants. Gene 759:144993. https://doi.org/10.1016/j.gene.2020.144993
doi: 10.1016/j.gene.2020.144993 pubmed: 32717311
Sanan-Mishra N, Goswami K (2022) Functional Annotation of miRNAs in Rice Using ARMOUR. In: Wani SH, Kumar A (eds) Genomics of Cereal Crops. Springer Protocols Handbooks, Humana, New York, pp 227–234
doi: 10.1007/978-1-0716-2533-0_10
Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592:1954–1967. https://doi.org/10.1002/1873-3468.13073
doi: 10.1002/1873-3468.13073 pubmed: 29710373
Sharma A, Angulo Bejarano PI, Castillo Maldonado I et al (2019) Genome-wide computational prediction and experimental validation of quinoa (Chenopodium quinoa) microRNAs. Can J Plant Sci 99:666–675. https://doi.org/10.1139/cjps-2018-0296
doi: 10.1139/cjps-2018-0296
Sharma A, Badola PK, Bhatia C et al (2020a) Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. Nat Plants 6:1262–1274. https://doi.org/10.1038/s41477-020-00769-x
doi: 10.1038/s41477-020-00769-x pubmed: 32958895
Sharma VK, Marla S, Zheng W et al (2022a) CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biol 23:6. https://doi.org/10.1186/s13059-021-02586-7
doi: 10.1186/s13059-021-02586-7 pubmed: 34980227 pmcid: 8722000
Sharma Y, Sharma A, Madhu, et al (2022b) Long Non-Coding RNAs as Emerging Regulators of Pathogen Response in Plants. Non-Coding RNA 8:4. https://doi.org/10.3390/ncrna8010004
doi: 10.3390/ncrna8010004 pubmed: 35076574 pmcid: 8788567
Sharma A, Ruiz-Manriquez LM, Serrano-Cano FI, et al (2020b) Identification of microRNAs and Their Expression in Leaf Tissues of Guava (Psidium guajava L.) under Salinity Stress. Agronomy 10:1920. https://doi.org/10.3390/agronomy10121920
Shelake RM, Kadam US, Kumar R et al (2022) Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Plant Commun 3:100417. https://doi.org/10.1016/j.xplc.2022.100417
doi: 10.1016/j.xplc.2022.100417 pubmed: 35927945 pmcid: 9700172
Singh S, Chaudhary R, Deshmukh R, Tiwari S (2023) Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Plant Mol Biol 111:1–20. https://doi.org/10.1007/s11103-022-01321-5
doi: 10.1007/s11103-022-01321-5 pubmed: 36315306
Son S, Park SR (2022) Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. Front Plant Sci 13:902413. https://doi.org/10.3389/fpls.2022.902413
doi: 10.3389/fpls.2022.902413 pubmed: 35677236 pmcid: 9169250
Song L, Fang Y, Chen L et al (2021) Role of non-coding RNAs in plant immunity. Plant Commun 2:100180. https://doi.org/10.1016/j.xplc.2021.100180
doi: 10.1016/j.xplc.2021.100180 pubmed: 34027394 pmcid: 8132121
Summanwar A, Basu U, Rahman H, Kav NNV (2020) Non-coding RNAs as emerging targets for crop improvement. Plant Sci 297:110521. https://doi.org/10.1016/j.plantsci.2020.110521
doi: 10.1016/j.plantsci.2020.110521 pubmed: 32563460
Takou M, Wieters B, Kopriva S et al (2019) Linking genes with ecological strategies in Arabidopsis thaliana. J Exp Bot 70:1141–1151. https://doi.org/10.1093/jxb/ery447
doi: 10.1093/jxb/ery447 pubmed: 30561727
Talakayala A, Ankanagari S, Garladinne M (2022) CRISPR-Cas genome editing system: A versatile tool for developing disease resistant crops. Plant Stress 3:100056. https://doi.org/10.1016/j.stress.2022.100056
doi: 10.1016/j.stress.2022.100056
Tian X, Song L, Wang Y, et al (2018) miR394 Acts as a Negative Regulator of Arabidopsis Resistance to B. cinerea Infection by Targeting LCR. Front Plant Sci 9:903. https://doi.org/10.3389/fpls.2018.00903
Um T, Choi J, Park T et al (2022) Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes. Plant Direct 6:e374. https://doi.org/10.1002/pld3.374
doi: 10.1002/pld3.374 pubmed: 35028494 pmcid: 8743358
Vats S, Kumawat S, Kumar V et al (2019) Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells 8:1386. https://doi.org/10.3390/cells8111386
doi: 10.3390/cells8111386 pubmed: 31689989 pmcid: 6912757
Wada N, Ueta R, Osakabe Y, Osakabe K (2020) Precision genome editing in plants: State-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol 20:234. https://doi.org/10.1186/s12870-020-02385-5
doi: 10.1186/s12870-020-02385-5 pubmed: 32450802 pmcid: 7249668
Wada N, Osakabe K, Osakabe Y (2022) Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiol 188:1825–1837. https://doi.org/10.1093/plphys/kiac027
doi: 10.1093/plphys/kiac027 pubmed: 35099553 pmcid: 8968252
Waititu JK, Zhang C, Liu J, Wang H (2020) Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress. Int J Mol Sci 21:8401. https://doi.org/10.3390/ijms21218401
doi: 10.3390/ijms21218401 pubmed: 33182372 pmcid: 7664903
Wang Q, Zhang B (2015) MicroRNAs in cotton: an open world needs more exploration. Planta 241:1303–1312. https://doi.org/10.1007/s00425-015-2282-8
doi: 10.1007/s00425-015-2282-8 pubmed: 25841643
Wang M, Yuan D, Tu L et al (2015) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol 207:1181–1197. https://doi.org/10.1111/nph.13429
doi: 10.1111/nph.13429 pubmed: 25919642
Wang Y, Feng C, Zhai Z et al (2020) The Apple microR171i-SCARECROW-LIKE PROTEINS26.1 Module Enhances Drought Stress Tolerance by Integrating Ascorbic Acid Metabolism. Plant Physiol 184:194–211. https://doi.org/10.1104/pp.20.00476
doi: 10.1104/pp.20.00476 pubmed: 32680976 pmcid: 7479918
Wang X, Fan H, Wang B, Yuan F (2023) Research progress on the roles of lncRNAs in plant development and stress responses. Front Plant Sci 14:1138901. https://doi.org/10.3389/fpls.2023.1138901
doi: 10.3389/fpls.2023.1138901 pubmed: 36959944 pmcid: 10028117
Wanga MA, Shimelis H, Mashilo J, Laing MD (2021) Opportunities and challenges of speed breeding: A review. Plant Breed 140:185–194. https://doi.org/10.1111/pbr.12909
doi: 10.1111/pbr.12909
Waseem M, Liu Y, Xia R (2021) Long Non-Coding RNAs, the Dark Matter: An Emerging Regulatory Component in Plants. Int J Mol Sci 22:86. https://doi.org/10.3390/ijms22010086
doi: 10.3390/ijms22010086
Welchen E, García L, Mansilla N, Gonzalez DH (2014) Coordination of plant mitochondrial biogenesis: Keeping pace with cellular requirements. Front Plant Sci 4:551. https://doi.org/10.3389/fpls.2013.00551
doi: 10.3389/fpls.2013.00551 pubmed: 24409193 pmcid: 3884152
Wikandari R, Manikharda BS et al (2021) Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security. Bioengineered 12:11305–11330. https://doi.org/10.1080/21655979.2021.2003665
doi: 10.1080/21655979.2021.2003665 pubmed: 34779353 pmcid: 8810126
Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164. https://doi.org/10.1038/nbt.3389
doi: 10.1038/nbt.3389 pubmed: 26479191
Wu L, Liu S, Qi H et al (2020) Research Progress on Plant Long Non-Coding RNA. Plants 9:408. https://doi.org/10.3390/plants9040408
doi: 10.3390/plants9040408 pubmed: 32218186 pmcid: 7237992
Xie F, Frazier TP, Zhang B (2011) Identification, characterization and expression analysis of MicroRNAs and their targets in the potato (Solanum tuberosum). Gene 473:8–22. https://doi.org/10.1016/j.gene.2010.09.007
doi: 10.1016/j.gene.2010.09.007 pubmed: 20933063
Yang H, Chen J, Yang S et al (2021) CRISPR/Cas14a-Based Isothermal Amplification for Profiling Plant MicroRNAs. Anal Chem 93:12602–12608. https://doi.org/10.1021/acs.analchem.1c02137
doi: 10.1021/acs.analchem.1c02137 pubmed: 34506121
Yang W, Bai Q, Li Y et al (2023) Epigenetic modifications: Allusive clues of lncRNA functions in plants. Comput Struct Biotechnol J 21:1989–1994. https://doi.org/10.1016/j.csbj.2023.03.008
doi: 10.1016/j.csbj.2023.03.008 pubmed: 36950220 pmcid: 10025020
Yoo BC, Yadav NS, Orozco EM, Sakai H (2020) Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 8:e8362. https://doi.org/10.7717/peerj.8362
doi: 10.7717/peerj.8362 pubmed: 31934513 pmcid: 6951285
Yu T, Zhu H (2019) Long Non-Coding RNAs: Rising Regulators of Plant Reproductive Development. Agronomy 9:53. https://doi.org/10.3390/agronomy9020053
doi: 10.3390/agronomy9020053
Yu T, Tzeng DTW, Li R et al (2019a) Genome-wide identification of long non-coding RNA targets of the tomato MADS box transcription factor RIN and function analysis. Ann Bot 123:469–482. https://doi.org/10.1093/aob/mcy178
doi: 10.1093/aob/mcy178 pubmed: 30376036
Yu Y, Zhang Y, Chen X, Chen Y (2019b) Plant Noncoding RNAs: Hidden Players in Development and Stress Responses. Annu Rev Cell Dev Biol 35:407–431. https://doi.org/10.1146/annurev-cellbio-100818-125218
doi: 10.1146/annurev-cellbio-100818-125218 pubmed: 31403819 pmcid: 8034839
Yue E, Cao H, Liu B (2020) OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa. Plants 9:1337. https://doi.org/10.3390/plants9101337
doi: 10.3390/plants9101337 pubmed: 33050518 pmcid: 7601473
Zaidi SS-A, Mahas A, Vanderschuren H, Mahfouz MM (2020) Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol 21:289. https://doi.org/10.1186/s13059-020-02204-y
doi: 10.1186/s13059-020-02204-y pubmed: 33256828 pmcid: 7702697
Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19:210. https://doi.org/10.1186/s13059-018-1586-y
doi: 10.1186/s13059-018-1586-y pubmed: 30501614 pmcid: 6267055
Zhang J, Zhou Z, Bai J et al (2020) Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. Natl Sci Rev 7:102–112. https://doi.org/10.1093/nsr/nwz142
doi: 10.1093/nsr/nwz142 pubmed: 34692021
Zhang D, Zhang Z, Unver T, Zhang B (2021) CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res 29:207–221. https://doi.org/10.1016/j.jare.2020.10.003
doi: 10.1016/j.jare.2020.10.003 pubmed: 33842017
Zhang J, Li J, Saeed S et al (2022) Identification and Functional Analysis of lncRNA by CRISPR/Cas9 During the Cotton Response to Sap-Sucking Insect Infestation. Front Plant Sci 13:784511. https://doi.org/10.3389/fpls.2022.784511
doi: 10.3389/fpls.2022.784511 pubmed: 35283887 pmcid: 8905227
Zhang F, Neik TX, Thomas WJW, Batley J (2023) CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future. Int J Mol Sci 24:8623. https://doi.org/10.3390/ijms24108623
doi: 10.3390/ijms24108623 pubmed: 37239967 pmcid: 10218198
Zhao B, Liang R, Ge L et al (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590. https://doi.org/10.1016/j.bbrc.2007.01.022
doi: 10.1016/j.bbrc.2007.01.022 pubmed: 17254555
Zhao Y, Zhang C, Liu W et al (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890. https://doi.org/10.1038/srep23890
doi: 10.1038/srep23890 pubmed: 27033976 pmcid: 4817149
Zhao ZX, Feng Q, Cao XL et al (2020) Osa-miR167d facilitates infection of Magnaporthe oryzae in rice. J Integr Plant Biol 62:702–715. https://doi.org/10.1111/jipb.12816
doi: 10.1111/jipb.12816 pubmed: 31001874
Zhao J, Lu Z, Wang L, Jin B (2021) Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int J Mol Sci 22:117. https://doi.org/10.3390/ijms22010117
doi: 10.3390/ijms22010117
Zheng X, Chen Y, Zhou Y et al (2021) Full-length annotation with multistrategy RNA-seq uncovers transcriptional regulation of lncRNAs in cotton. Plant Physiol 185:179–195. https://doi.org/10.1093/plphys/kiaa003
doi: 10.1093/plphys/kiaa003 pubmed: 33631798
Zhou J, Deng K, Cheng Y et al (2017) CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice. Front Plant Sci 8:1598. https://doi.org/10.3389/fpls.2017.01598
doi: 10.3389/fpls.2017.01598 pubmed: 28955376 pmcid: 5602353
Zhou X, Khare T, Kumar V (2020a) Recent trends and advances in identification and functional characterization of plant miRNAs. Acta Physiol Plant 42:25. https://doi.org/10.1007/s11738-020-3013-8
doi: 10.1007/s11738-020-3013-8
Zhou Y, Liu W, Li X et al (2020b) Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean. BMC Plant Biol 20:190. https://doi.org/10.1186/s12870-020-02370-y
doi: 10.1186/s12870-020-02370-y pubmed: 32370790 pmcid: 7201782
Zhou J, Yuan M, Zhao Y et al (2021) Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. Plant Biotechnol J 19:1240–1252. https://doi.org/10.1111/pbi.13544
doi: 10.1111/pbi.13544 pubmed: 33440058 pmcid: 8196656
Zhou J, Zhang R, Jia X et al (2022) CRISPR-Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. Plant Biotechnol J 20:310–322. https://doi.org/10.1111/pbi.13713
doi: 10.1111/pbi.13713 pubmed: 34555252
Zhu B, Yang Y, Li R et al (2015) RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. J Exp Bot 66:4483–4495. https://doi.org/10.1093/jxb/erv203
doi: 10.1093/jxb/erv203 pubmed: 25948705 pmcid: 4507755
Zhu C, Zhang S, Fu H et al (2019) Transcriptome and Phytochemical Analyses Provide New Insights Into Long Non-Coding RNAs Modulating Characteristic Secondary Metabolites of Oolong Tea (Camellia sinensis) in Solar-Withering. Front Plant Sci 10:1638. https://doi.org/10.3389/fpls.2019.01638
doi: 10.3389/fpls.2019.01638 pubmed: 31929782 pmcid: 6941427
Zhu H, Li C, Gao C (2020a) Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21:661–677. https://doi.org/10.1038/s41580-020-00288-9
doi: 10.1038/s41580-020-00288-9 pubmed: 32973356
Zhu X, He S, Fang D et al (2020b) High-Throughput Sequencing-Based Identification of Arabidopsis miRNAs Induced by Phytophthora capsici Infection. Front Microbiol 11:1094. https://doi.org/10.3389/fmicb.2020.01094
doi: 10.3389/fmicb.2020.01094 pubmed: 32655510 pmcid: 7324540
Zhu QH, Jin S, Yuan Y et al (2022) CRISPR/Cas9-mediated saturated mutagenesis of the cotton MIR482 family for dissecting the functionality of individual members in disease response. Plant Direct 6:e410. https://doi.org/10.1002/pld3.410
doi: 10.1002/pld3.410 pubmed: 35685042 pmcid: 9170593

Auteurs

Luis Alberto Bravo-Vázquez (LA)

Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico.

Andrea Méndez-García (A)

Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico.

Verenice Chamu-García (V)

Tecnologico de Monterrey, School of Engineering and Sciences, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, 72453, Puebla, Mexico.

Alma L Rodríguez (AL)

Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico.

Anindya Bandyopadhyay (A)

International Rice Research Institute, 4031, Manila, Philippines. anindya.b@ril.com.
Reliance Industries Ltd., Navi Mumbai, Maharashtra, 400701, India. anindya.b@ril.com.

Sujay Paul (S)

Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico. spaul@tec.mx.

Classifications MeSH