Polyurethane-Degrading Potential of Alkaline Groundwater Bacteria.
16S rDNA sequencing
Bioremediation
Environmental pollution
Groundwater
Plastics
Polyurethane-degrading bacteria
Journal
Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663
Informations de publication
Date de publication:
28 Dec 2023
28 Dec 2023
Historique:
received:
08
09
2023
accepted:
24
12
2023
medline:
28
12
2023
pubmed:
28
12
2023
entrez:
28
12
2023
Statut:
epublish
Résumé
Plastic waste is a global environmental burden and long-lasting plastic polymers, including ubiquitous and toxic polyurethanes (PUs), rapidly accumulate in the water environments. In this study, samples were collected from the three alkaline groundwater occurrences in the geotectonic regions of the Pannonian basin of northern Serbia (Torda and Slankamen Banja) and Inner Dinarides of western Serbia (Mokra Gora) with aim to isolate and identify bacteria with plastic- and lignocellulose-degrading potential, that could be applied to reduce the burden of environmental plastic pollution. The investigated occurrences belong to cold, mildly alkaline (pH: 7.6-7.9) brackish and hyperalkaline (pH: 11.5) fresh groundwaters of the SO
Identifiants
pubmed: 38153543
doi: 10.1007/s00248-023-02338-z
pii: 10.1007/s00248-023-02338-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
21Subventions
Organisme : EU Horizon 2020 Research and Innovation Programme - BioICEP
ID : 870292
Organisme : Ministry of Science, Innovation and Technological Development of the Republic of Serbia
ID : 451-03-47/2023-01/200042
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709. https://doi.org/10.3389/fmicb.2020.580709
doi: 10.3389/fmicb.2020.580709
pubmed: 33324366
pmcid: 7726165
Ferris G, Szponar N, Edwards B (2021) Groundwater Microbiology. Groundwater Project, Guelph, Ontario, Canada, p 66
doi: 10.21083/978-1-77470-005-1
Karwautz C, Griebler C (2022) Microbial Biodiversity in Groundwater Ecosystems. In: Encyclopedia of Inland Waters (2nd edition), p. 397–411
Liu S, Chen Q, Li J, Li Y, Zhong S, Hu J, Ni J (2022) Different spatiotemporal dynamics, ecological drivers and assembly processes of bacterial, archaeal and fungal communities in brackish-saline groundwater. Water Res 214:118193. https://doi.org/10.1016/j.watres.2022.118193
doi: 10.1016/j.watres.2022.118193
pubmed: 35217492
Villeneuve K, Violette M, Lazar CS (2022) From recharge, to Groundwater, to Discharge areas in Aquifer systems in Quebec (Canada): shaping of Microbial Diversity and Community structure by environmental factors. Genes 14(1). https://doi.org/10.3390/genes14010001
Ruiz-González C, Rodellas V, Garcia-Orellana J (2021) The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiol Rev 45(5):fuab010. https://doi.org/10.1093/femsre/fuab010
doi: 10.1093/femsre/fuab010
pubmed: 33538813
pmcid: 8498565
Starke R, Müller M, Gaspar M, Marz M, Küsel K, Totsche KU, Jehmlich N (2017) Candidate Brocadiales dominates C, N and S cycling in anoxic groundwater of a pristine limestone-fracture aquifer. J Proteom 152:153–160. https://doi.org/10.1016/j.jprot.2016.11.003
doi: 10.1016/j.jprot.2016.11.003
Tang M, Chen Q, Zhong H, Ju F, Wu Y, Hu J, Sun W (2023) Exploring diversity patterns and driving mechanisms of the antibiotic resistome and microbiome in saline groundwater. J Hazard Mater 446:130734. https://doi.org/10.1016/j.jhazmat.2023.130734
doi: 10.1016/j.jhazmat.2023.130734
Tiago I, Chung AP, Veríssimo A (2004) Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations. Appl Environ Microbiol 70(12):7378–7387. https://doi.org/10.1128/AEM.70.12.7378-7387.2004
doi: 10.1128/AEM.70.12.7378-7387.2004
pubmed: 15574939
pmcid: 535156
Magnabosco C, Tekere M, Lau MC, Linage B, Kuloyo O, Erasmus M, Cason E, van Heerden E, Borgonie G, Kieft TL, Olivier J, Onstott TC (2014) Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front Microbiol 5:679. https://doi.org/10.3389/fmicb.2014.00679
doi: 10.3389/fmicb.2014.00679
pubmed: 25566203
pmcid: 4269199
Baculi RQ, Lantican NB, De Los Reyes FL, Raymundo AK (2015) Prokaryotic community analysis of a hyperalkaline spring in the Philippines using 16S rRNA gene clone library construction. Philippine J Sci 144(1):1–12
Twing KI, Brazelton WJ, Kubo MD, Hyer AJ, Cardace D, Hoehler TM, McCollom TM, Schrenk MO (2017) Serpentinization-influenced groundwater harbors extremely low diversity microbial communities adapted to high pH. Front Microbiol 8:308. https://doi.org/10.3389/fmicb.2017.00308
doi: 10.3389/fmicb.2017.00308
pubmed: 28298908
pmcid: 5331062
Griebler C, Avramov M (2015) Groundwater ecosystem services: a review. Freshw Sci 34(1):355–367
doi: 10.1086/679903
Šaraba V, Milovanovic J, Nikodinovic-Runic J, Budin C, de Boer T, Ciric M (2023) Brackish groundwaters Contain Plastic-and cellulose-degrading Bacteria. Microb Ecol 1–9. https://doi.org/10.1007/s00248-023-02278-8
MacLeod M, Arp HPH, Tekman MB, Jahnke A (2021) The global threat from plastic pollution. Science 373(6550):61–65
doi: 10.1126/science.abg5433
pubmed: 34210878
Danso D, Chow J, Streit WR (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol 85(19):e01095–e01019. https://doi.org/10.1128/AEM.01095-19
doi: 10.1128/AEM.01095-19
pubmed: 31324632
pmcid: 6752018
Samandra S, Johnston JM, Jaeger JE, Symons B, Xie S, Currell M, Ellis AV, Clarke BO (2022) Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Sci Total Environ 802:149727. https://doi.org/10.1016/j.scitotenv.2021.149727
doi: 10.1016/j.scitotenv.2021.149727
pubmed: 34461481
Chia RW, Lee JY, Kim H, Jang J (2021) Microplastic pollution in soil and groundwater: a review. Environ Chem Lett 19(6):4211–4224. https://doi.org/10.1007/s10311-021-01297-6
doi: 10.1007/s10311-021-01297-6
Chia WY, Tang DYY, Khoo KS, Lup ANK, Chew KW (2020) Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environ Sci Ecotechnology 4:100065. https://doi.org/10.1016/j.ese.2020.100065
doi: 10.1016/j.ese.2020.100065
Díaz Rodríguez CA, Díaz-García L, Bunk B, Spröer C, Herrera K, Tarazona NA, Jiménez DJ (2022) Novel bacterial taxa in a minimal lignocellulolytic consortium and their potential for lignin and plastics transformation. ISME Commun 2(1):89. https://doi.org/10.1038/s43705-022-00176-7
doi: 10.1038/s43705-022-00176-7
pubmed: 37938754
pmcid: 9723784
Taubert M, Stähly J, Kolb S, Küsel K (2019) Divergent microbial communities in groundwater and overlying soils exhibit functional redundancy for plant-polysaccharide degradation. PLoS ONE 14(3):e0212937. https://doi.org/10.1371/journal.pone.0212937
doi: 10.1371/journal.pone.0212937
pubmed: 30865693
pmcid: 6415789
Šaraba V, Dragišić V, Janakiev T, Obradović V, Ćopić M, Knežević B, Dimkić I (2022) Bacteriome composition analysis of selected mineral water occurrences in Serbia. Archives of Biological Sciences 74(1):67–79. https://doi.org/10.2298/ABS211223005S
doi: 10.2298/ABS211223005S
Dragišić V, Tišma R, Milenić D, Miladinović B, Potkonjak B, Špadijer S (1999) Hiperalkalne mineralne vode Srbije. In: International Conference Water for the 21st century (pp. 611–618). Belgrade: Water Technology and Sanitary Engineering Association
Filipović B, Krunić O, Lazić M (2005) Regionalna hidrogeologija Srbije. Belgrade: University of Belgrade, Faculty of Mining and Geology.
Nikolić, J., Đokić, V., Lazić, B., & Živanović, S. (2016). Pojave gorkih voda u naselju Torda kod Žitišta. In: D. Polomčić, (Ed.), XV Serbian Symposium on Hydrogeology with International participation (pp. 363–367). Belgrade: University of Belgrade, Faculty of Mining and Geology. ISBN: 978-86-7352-316-3.
Tomić, M., & Lazić, M. (2017). Lekovite vode Vojvodine kao potencijal za razvoj banjskog turizma. Belgrade: Endowment Andrejevi&.
Šaraba V (2021) Microorganisms – biohydrogeological indicators of select mineral waters occurrences in Serbia (Doctoral Dissertation). Belgrade: University of Belgrade, Faculty of Mining and Geology
Spahić D, Nikić Z, Poznanović-Spahić ZM, Mukherjee S, Dokmanović P (2023) Discovery of hyperalkaline waters in the ophiolites of western Serbia: environmental considerations for carbon capture and sequestration. Geoenergy Sci Eng 231:212319. https://doi.org/10.1016/j.geoen.2023.212319
doi: 10.1016/j.geoen.2023.212319
Mojsilović S, Baklajić D, Đoković I, Avramović V (1978) Tumač Za list Titovo Užice. Federal Geological Survey, Belgrade
Filipović B (2003) Mineralne, termalne i termomineralne Vode Srbije. University of Belgrade, Faculty of Mining and Geology, Belgrade
Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS, Spear JR, Boyd ES (2021) Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME J 15(4):1121–1135. https://doi.org/10.1038/s41396-020-00838-1
doi: 10.1038/s41396-020-00838-1
pubmed: 33257813
Gupta RS (2013) Molecular markers for photosynthetic bacteria and insights into the origin and spread of photosynthesis. Advances in botanical research, vol 66. Academic Press, pp 37–66
Guðmundsdóttir R, Kreiling AK, Kristjánsson BK, Marteinsson VÞ, Pálsson S (2019) Bacterial diversity in Icelandic cold spring sources and in relation to the groundwater amphipod Crangonyx Islandicus. PLoS ONE, 14(10), e0222527
Ruff, S. E., Humez, P., de Angelis, I. H., Diao, M., Nightingale, M., Cho, S., … Strous,M. (2023). Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nature Communications, 14(1), 3194
Vargas-García MDC, Sola F, Vallejos Á (2023) Comparative study of Microbial Diversity in different Coastal aquifers: determining factors. Water 15(7):1337
doi: 10.3390/w15071337
Liu X, Ecarnot M, Kontro MH (2015) The physicochemical conditions of isolation source determine the occurrence of Pseudomonas fluorescens group species. Ann Microbiol 65(4):2363–2377. https://doi.org/10.1007/s13213-015-1078-1
doi: 10.1007/s13213-015-1078-1
Chenia HY, Duma S (2017) Characterization of virulence, cell surface characteristics and biofilm-forming ability of Aeromonas spp. isolates from fish and sea water. J Fish Dis 40(3):339–350. https://doi.org/10.1111/jfd.12516
doi: 10.1111/jfd.12516
pubmed: 27425219
Semenova, E. M., Babich, T. L., Sokolova, D. S., Ershov, A. P., Raievska, Y. I., Bidzhieva,S. K., … Nazina, T. N. (2022). Microbial Communities of Seawater and Coastal Soil of Russian Arctic Region and Their Potential for Bioremediation from Hydrocarbon Pollutants.Microorganisms, 10(8), 1490. https://doi.org/10.3390/microorganisms10081490
Percival SL, Williams DW (2014) Vibrio. In: Microbiology of waterborne diseases (2nd edition) (pp. 237–248). Academic Press
Tomić P, Romelić J (1999) Mineral and thermal waters of Srem, present and prospective usage. Geogr Panonica 3:8–12
Klimo A (2011) Mineralne Vode Banjskih lečilišta Panonskog Basena Srbije. Srp Arh Celok Lek 139(3–4):203–208. https://doi.org/10.2298/SARH1104203K
doi: 10.2298/SARH1104203K
Ferreras ER, De Maayer P, Makhalanyane TP, Guerrero LD, Aislabie JM, Cowan DA (2014) Draft genome sequence of Microbacterium sp. strain CH12i, isolated from shallow groundwater in Cape Hallett, Antarctica. Genome Announcements 2(4):10–1128
doi: 10.1128/genomeA.00789-14
Baculi R, Colladi C, Evangelista A (2017) Molecular profile of alkaline enzyme-producing bacteria from serpentization-driven spring in Zambales, Philippines. Asian J Microbiol Biotechnol Environ Exp Sci 19(1):204–215 ISSN-0972-3005
Nikić Z, Sreckovic-Batocanin D, Burazer M, Ristic R, Papic P, Nikolic V (2013) A conceptual model of mildly alkaline water discharging from the Zlatibor ultramafic massif, western Serbia. Hydrogeol J 21(5):1147. https://doi.org/10.1007/s10040-013-0983-2
doi: 10.1007/s10040-013-0983-2
Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248:193–219. https://doi.org/10.1016/j.lithos.2015.12.023
doi: 10.1016/j.lithos.2015.12.023
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol 3:75. https://doi.org/10.3389/fbioe.2015.00075
doi: 10.3389/fbioe.2015.00075
pubmed: 26090360
pmcid: 4453477
Hung, C. S., Zingarelli, S., Nadeau, L. J., Biffinger, J. C., Drake, C. A., Crouch,A. L., … Crookes-Goodson, W. J. (2016). Carbon catabolite repression and Impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Applied and environmental microbiology, 82(20), 6080–6090. https://doi.org/10.1128/AEM.01448-16
Patel M, Patel HM, Vohra N, Dave S (2020) Complete genome sequencing and comparative genome characterization of the lignocellulosic biomass degrading bacterium Pseudomonas stutzeri MP4687 from cattle rumen. Biotechnol Rep 28:e00530. https://doi.org/10.1016/j.btre.2020.e00530
doi: 10.1016/j.btre.2020.e00530
Liu Q, He X, Luo G, Wang K, Li D (2022) Deciphering the dominant components and functions of bacterial communities for lignocellulose degradation at the composting thermophilic phase. Bioresour Technol 348:126808. https://doi.org/10.1016/j.biortech.2022.126808
doi: 10.1016/j.biortech.2022.126808
pubmed: 35131458
Gunawan, N. R., Tessman, M., Schreiman, A. C., Simkovsky, R., Samoylov, A. A., Neelakantan,N. K., … Mayfield, S. P. (2020). Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products. Bioresource Technology Reports, 11, 100513. https://doi.org/10.1016/j.biteb.2020.100513
Chandra P, Singh DP (2020) Microplastic degradation by bacteria in aquatic ecosystem. In: Microorganisms for sustainable environment and health (pp. 431–467). Elsevier. https://doi.org/10.1016/B978-0-12-819001-2.00022-X
Niu, L., Li, Y., Li, Y., Hu, Q., Wang, C., Hu, J., … Zhang, H. (2021). New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments. Water Research, 188, 116449. https://doi.org/10.1016/j.watres.2020.116449
Vanwijnsberghe S, Peeters C, Cnockaert M, De Canck E, Vandamme P (2022) Paraburkholderia gardini sp. nov. and paraburkholderia saeva sp. nov.: Novel aromatic compound degrading bacteria isolated from garden and forest soil samples. Syst Appl Microbiol 45(3):126318. https://doi.org/10.1016/j.syapm.2022.126318
doi: 10.1016/j.syapm.2022.126318
pubmed: 35364501
Okolie BI (2014) Microbial degradation of polyurethane (Doctoral dissertation). University of Ibdan, Department of Microbiology. http://80.240.30.238/handle/123456789/807
Mahajan N, Gupta P (2015) New insights into the microbial degradation of polyurethanes. RSC Adv 5(52):41839–41854. https://doi.org/10.1039/C5RA04589D
doi: 10.1039/C5RA04589D
Nikolaivits, E., Pantelic, B., Azeem, M., Taxeidis, G., Babu, R., Topakas, E., … Nikodinovic-Runic,J. (2021). Progressing plastics circularity: A review of mechano-biocatalytic approaches for waste plastic (re) valorization. Frontiers in Bioengineering and Biotechnology, 9, 696040. doi: 10.3389/fbioe.2021.696040
Hebbale D, Bhargavi R, Ramachandra TV (2019) Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon 5(3):e01372. https://doi.org/10.1016/j.heliyon.2019.e01372
doi: 10.1016/j.heliyon.2019.e01372
pubmed: 30957049
pmcid: 6431756
Urgessa OE, Sima YA, Adem MM, Ayele AK (2020) Isolation of cellulose degrading bacteria from rumen and evaluation of cellulase production by the isolate using lignocellulosic substrate. Ethiop J Sci Sustainable Dev 7(1):8–17. https://doi.org/10.20372/ejssdastu:v7.i1.2020.127
doi: 10.20372/ejssdastu:v7.i1.2020.127
Akther S, Paul GK, Mahmud S, Hossain MS, Saleh MA, Zaman S, Uddin MS (2022) Comparative polymer biodegradation efficiency of an isolated Acinetobacter sp. with bravibacillus sp. and E. Coli by resting cells. J Adv Biotechnol Exp Ther 5:487. https://doi.org/10.5455/jabet.2022.d130
doi: 10.5455/jabet.2022.d130
Guan, Y., Zhu, H., Zhu, Y., Zhao, H., Shu, L., Song, J., … Yang, M. (2022). Microbial consortium composed of Cellulomonas ZJW-6 and Acinetobacter DA-25 improves straw lignocellulose degradation. Archives of Microbiology, 204(2), 139. https://doi.org/10.1007/s00203-021-02748-y
Okeke BC, Lu J (2011) Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl Biochem Biotechnol 163:869–881. https://doi.org/10.1007/s12010-010-9091-0
doi: 10.1007/s12010-010-9091-0
pubmed: 20859703
Ventorino, V., Aliberti, A., Faraco, V., Robertiello, A., Giacobbe, S., Ercolini,D., … Pepe, O. (2015). Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Scientific Reports, 5(1), 8161. https://doi.org/10.1038/srep08161
Uchida H, Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Tokiwa Y, Nakahara T (2000) Properties of a bacterium which degrades solid poly (tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiol Lett 189(1):25–29
doi: 10.1111/j.1574-6968.2000.tb09201.x
pubmed: 10913861
Lewin, G. R., Johnson, A. L., Soto, R. D. M., Perry, K., Book, A. J., Horn, H. A.,… Currie, C. R. (2016). Cellulose-enriched microbial communities from leaf-cutter ant (Atta colombica) refuse dumps vary in taxonomic composition and degradation ability.PLoS One, 11(3), e0151840. https://doi.org/10.1371/journal.pone.0151840
Charnock C (2021) Norwegian soils and waters contain mesophilic, plastic-degrading bacteria. Microorganisms 9(1):94. https://doi.org/10.3390/microorganisms9010094
doi: 10.3390/microorganisms9010094
pubmed: 33401570
pmcid: 7823905
Rüthi J, Cerri M, Brunner I, Stierli B, Sander M, Frey B (2023) Discovery of plastic-degrading microbial strains isolated from the alpine and Arctic terrestrial plastisphere. Front Microbiol 14:1178474. https://doi.org/10.3389/fmicb.2023.1178474
doi: 10.3389/fmicb.2023.1178474
pubmed: 37234546
pmcid: 10206078