The regenerative potential of Tideglusib and CHIR99021 small molecules as potent odontogenic differentiation enhancers of human dental pulp stem cells.

AXIN2 Dental pulp capping Dentin GSK-3 inhibitor Regeneration Wnt/β-catenin signalling pathway

Journal

Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115

Informations de publication

Date de publication:
28 Dec 2023
Historique:
received: 07 10 2023
accepted: 18 12 2023
medline: 28 12 2023
pubmed: 28 12 2023
entrez: 28 12 2023
Statut: epublish

Résumé

To assess the effect of Tideglusib and CHIR99021 small molecules on the odontogenic differentiation potential of human dental pulp stem cells (hDPSCs) via Wnt/β-catenin pathway activation. hDPSCs were isolated from impacted third molars indicated for extraction and were characterized by flow cytometry. hDPSCs were then induced to differentiate into odontogenic lineage in the presence of Tideglusib and CHIR99021. Odontogenic differentiation was evaluated using Alizarin Red stain and RT-PCR for expression of odontogenic specific differentiation markers: DSPP, DMP1, ALP, OPN, and RUNX2 in relation to undifferentiated cells. RT-PCR was also conducted to assess the expression of Wnt/β-catenin pathway activation marker (AXIN2). One-way ANOVA Kruskal-Wallis test was used for statistical analysis. Wnt/β-catenin pathway was successfully activated by Tideglusib and CHIR99021 in hDPSCs where AXIN2 was significantly upregulated. Successful odontogenic differentiation was confirmed by Alizarin Red staining of calcified nodules. RT-PCR for odontogenic differentiation markers DSPP, DMP1, and RUNX expression by hDPSCs induced by CHIR99021 was higher than that expressed by hDPSCs induced by Tideglusib, whereas expression of OPN and ALP was higher in Tideglusib-induced cells than in CHIR99021-induced cells. Both small molecules successfully induced odontogenic differentiation of hDPSCs through Wnt/β-catenin pathway activation. These findings suggest that Tideglusib and CHIR99021 can be applied clinically in pulp regeneration to improve strategies for vital pulp regeneration and to promote dentine repair.

Identifiants

pubmed: 38153556
doi: 10.1007/s00784-023-05452-x
pii: 10.1007/s00784-023-05452-x
doi:

Types de publication

Journal Article

Langues

eng

Pagination

48

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Murray PE, Garcia-Godoy F, Hargreaves KM, Article R (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33:377–390. https://doi.org/10.1016/j.joen.2006.09.013
doi: 10.1016/j.joen.2006.09.013 pubmed: 17368324
Hargreaves KM, Law AS (2010) Regenerative endodontics. In: Cohen’s pathways of the pulp, Tenth Edition, Elsevier, pp 602–619
Zaugg LK, Banu A, Walther AR et al (2020) Translation approach for dentine regeneration using GSK-3 antagonists. J Dent Res 99:544–551. https://doi.org/10.1177/0022034520908593
doi: 10.1177/0022034520908593 pubmed: 32156176
Birjandi AA, Sharpe P (2021) Wnt signalling in regenerative dentistry. Front Dent Med 2:725468
doi: 10.3389/fdmed.2021.725468
Birjandi AA, Suzano FR, Sharpe PT (2020) Drug repurposing in dentistry; towards application of small molecules in dentin repair. Int J Mol Sci 21. https://doi.org/10.3390/ijms21176394
Siddiqa A (2020) GSK 3 inhibitors releasing nanoparticles for dentine repair—IJSER Journal Publication. Int J Sci Eng Res 11:1714–1731
Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35:161–168
doi: 10.1016/j.tibs.2009.10.002 pubmed: 19884009
Neves VCM, Babb R, Chandrasekaran D, Sharpe PT (2017) Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci Rep 7. https://doi.org/10.1038/srep39654
Tatullo M, Makeeva I, Rengo S et al (2019) Small molecule GSK-3 antagonists play a pivotal role in reducing the local inflammatory response, in promoting resident stem cell activation and in improving tissue repairing in regenerative dentistry. Histol Histopathol 34:1195–1203
pubmed: 31169298
Sato N, Meijer L, Skaltsounis L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63. https://doi.org/10.1038/nm979
doi: 10.1038/nm979 pubmed: 14702635
Hanna S, Aly R, Eldeen GN et al (2023) Small molecule GSK-3 inhibitors safely promote the proliferation and viability of human dental pulp stem cells—in vitro. Biomedicines 11. https://doi.org/10.3390/biomedicines11020542
Tolosa E, Litvan I, Höglinger GU et al (2014) A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 29:470–478. https://doi.org/10.1002/mds.25824
doi: 10.1002/mds.25824 pubmed: 24532007
Comeau-Gauthier M, Tarchala M, Luna JLRG et al (2020) Unleashing β-catenin with a new anti-Alzheimer drug for bone tissue regeneration. Injury 51:2449–2459. https://doi.org/10.1016/j.injury.2020.07.035
doi: 10.1016/j.injury.2020.07.035 pubmed: 32829895
Ring DB, Johnson KW, Henriksen EJ et al (2003) Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52:588–595. https://doi.org/10.2337/diabetes.52.3.588
doi: 10.2337/diabetes.52.3.588 pubmed: 12606497
Heng BC, Jiang S, Yi B et al (2019) Small molecules enhance neurogenic differentiation of dental-derived adult stem cells. Arch Oral Biol 102:26–38. https://doi.org/10.1016/j.archoralbio.2019.03.024
doi: 10.1016/j.archoralbio.2019.03.024 pubmed: 30954806
Govarthanan K, Vidyasekar P, Gupta PK et al (2020) Glycogen synthase kinase 3β inhibitor-CHIR 99021 augments the differentiation potential of mesenchymal stem cells. Cytotherapy 22:91–105. https://doi.org/10.1016/j.jcyt.2019.12.007
doi: 10.1016/j.jcyt.2019.12.007 pubmed: 31980369
Cao N, Liang H, Huang J et al (2013) Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res 23:1119–1132. https://doi.org/10.1038/cr.2013.102
doi: 10.1038/cr.2013.102 pubmed: 23896987 pmcid: 3773575
Dang Le Q, Rodprasert W, Kuncorojakti S et al (2022) In vitro generation of transplantable insulin-producing cells from canine adipose-derived mesenchymal stem cells. Sci Reports 12(11):1–18. https://doi.org/10.1038/s41598-022-13114-3
doi: 10.1038/s41598-022-13114-3
Hoglinger GU, Huppertz H-J, Wagenpfeil S et al (2014) Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord 29:479–487. https://doi.org/10.1002/mds.25815
doi: 10.1002/mds.25815 pubmed: 24488721
Del Ser T, Steinwachs KC, Gertz HJ et al (2013) Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimer’s Dis 33:205–215. https://doi.org/10.3233/JAD-2012-120805
doi: 10.3233/JAD-2012-120805
Lektemur Alpan A, Çalişir M, Kizildağ A et al (2020) Effects of a glycogen synthase kinase 3 inhibitor tideglusib on bone regeneration with calvarial defects. J Craniofac Surg 31:1477–1482. https://doi.org/10.1097/SCS.0000000000006326
doi: 10.1097/SCS.0000000000006326 pubmed: 32195836
Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630. https://doi.org/10.1073/pnas.240309797
Ahmed NE-MB, Aly RM, El-Massieh PMA, El Azeem AFA (2018) Comparing the stemness properties of dental pulp cells (Dpscs), collected, processed, and cryopreserved under different conditions. J Stem Cells 13:95–106
Huang GTJ, Gronthos S, Shi S (2009) Critical reviews in oral biology & medicine: mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806
doi: 10.1177/0022034509340867 pubmed: 19767575 pmcid: 2830488
Shi X, Mao J, Liu Y (2020) Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications. Stem Cells Transl Med 9:445–464. https://doi.org/10.1002/SCTM.19-0398
doi: 10.1002/SCTM.19-0398 pubmed: 31943813 pmcid: 7103623
Aly RM, Aglan HA, Eldeen GN, Ahmed HH (2022) Optimization of differentiation protocols of dental tissues stem cells to pancreatic β-cells. BMC Mol Cell Biol 23. https://doi.org/10.1186/s12860-022-00441-6
Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E (2015) Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int 2016:4709572–4709572
Nakashima M, Iohara K (2014) Mobilized dental pulp stem cells for pulp regeneration: initiation of clinical trial. J Endod 40:26–32. https://doi.org/10.1016/j.joen.2014.01.020
doi: 10.1016/j.joen.2014.01.020
Nakashima M, Iohara K, Murakami M et al (2017) Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther 43:S82–S86. https://doi.org/10.1186/s13287-017-0506-5
doi: 10.1186/s13287-017-0506-5
Szubarga A, Kamińska M, Kotlarz W et al (2021) Human stem cells-sources, sourcing and in vitro methods. Med J Cell Biol 9:73–85. https://doi.org/10.2478/acb-2021-0011
doi: 10.2478/acb-2021-0011
Rezai Rad M, Hosseinpour S, Ye Q, Yao S (2021) Dental tissues originated stem cells for tissue regeneration. In: Regenerative approaches in dentistry. Springer International Publishing, pp 9–33
doi: 10.1007/978-3-030-59809-9_2
Atari M, Gil-Recio C, Fabregat M et al (2012) Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci 125:3343–3356. https://doi.org/10.1242/JCS.096537
doi: 10.1242/JCS.096537 pubmed: 22467856
El-Moataz N, Ahmed B, Aly RM et al (2018) Comparing the stemness properties of dental pulp cells (DPSCs), collected, processed, and cryopreserved under different conditions. J Stem Cells 13:95–107
Bernkopf DB, Brückner M, Hadjihannas MV, Behrens J (2019) An aggregon in conductin/axin2 regulates Wnt/β-catenin signaling and holds potential for cancer therapy. Nat Commun 10(1):1–14. https://doi.org/10.1038/s41467-019-12203-8
doi: 10.1038/s41467-019-12203-8
Tziafas D, Kodonas K (2010) Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 36:781–789. https://doi.org/10.1016/J.JOEN.2010.02.006
Sabbagh J, Ghassibe-Sabbagh M, Fayyad-Kazan M et al (2020) Differences in osteogenic and odontogenic differentiation potential of DPSCs and SHED. J Dent 101:103413. https://doi.org/10.1016/J.JDENT.2020.103413
doi: 10.1016/J.JDENT.2020.103413 pubmed: 32585262
Deng P, Huang J, Zhang Q et al (2023) The role of EMILIN-1 in the osteo/odontogenic differentiation of dental pulp stem cells. BMC Oral Health 23. https://doi.org/10.1186/s12903-023-02905-3

Auteurs

Samer Hanna (S)

Endodontics Department, Universidad Europea De Madrid (UEM), Madrid, Spain.

Ghada Nour Eldeen (GN)

Molecular Genetics & Enzymology Department, Human Genetic & Genome Research Institute, National Research Centre, Dokki, Giza, Egypt.

Ruth Perez Alfayate (RP)

Endodontics Department, Universidad Europea De Madrid (UEM), Madrid, Spain.

Riham Aly (R)

Basic Dental Science Department, Oral Medicine & Dentistry Research Institute, National Research Centre, Dokki, Giza, Egypt. rm.el-sayed@nrc.sci.eg.
Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt. rm.el-sayed@nrc.sci.eg.

Classifications MeSH