Keeping track of time: Horizontal spatial biases for hours, days, and months.

Line bisection Mental time line Mouse tracking Space-time association Time words

Journal

Memory & cognition
ISSN: 1532-5946
Titre abrégé: Mem Cognit
Pays: United States
ID NLM: 0357443

Informations de publication

Date de publication:
28 Dec 2023
Historique:
accepted: 05 12 2023
medline: 28 12 2023
pubmed: 28 12 2023
entrez: 28 12 2023
Statut: aheadofprint

Résumé

In many Western cultures, the processing of temporal words related to the past and to the future is associated with left and right space, respectively - a phenomenon known as the horizontal Mental Time Line (MTL). While this mapping is apparently quite ubiquitous, its regularity and consistency across different types of temporal concepts remain to be determined. Moreover, it is unclear whether such spatial mappings are an essential and early constituent of concept activation. In the present study, we used words denoting time units at different scales (hours of the day, days of the week, months of the year) associated with either left space (e.g., 9 a.m., Monday, February) or right space (e.g., 8 p.m., Saturday, November) as cues in a line bisection task. Fifty-seven healthy adults listened to temporal words and then moved a mouse cursor to the perceived midpoint of a horizontally presented line. We measured movement trajectories, initial line intersection coordinates, and final bisection response coordinates. We found movement trajectory displacements for left- vs. right-biasing hour and day cues. Initial line intersections were biased specifically by month cues, while final bisection responses were biased specifically by hour cues. Our findings offer general support to the notion of horizontal space-time associations and suggest further investigation of the exact chronometry and strength of this association across individual time units.

Identifiants

pubmed: 38153647
doi: 10.3758/s13421-023-01508-1
pii: 10.3758/s13421-023-01508-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Allan, L. G., & Gibbon, J. (1991). Human bisection at the geometric mean. Learning and Motivation, 22(1–2), 39–58.
Barsalou, L. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(4), 637–660.
Belli, F., Felisatti, A., & Fischer, M. H. (2021). “BreaThink”: Breathing affects production and perception of quantities. Experimental Brain Research, 239(8), 2489–2499.
pubmed: 34117890 pmcid: 8196292
Bender, A., & Beller, S. (2014). Mapping spatial frames of reference onto time: A review of theoretical accounts and empirical findings. Cognition, 132(3), 342–382.
pubmed: 24873738
Bender, A., Beller, S., & Bennardo, G. (2010). Temporal frames of reference: Conceptual analysis and empirical evidence from German, English, mandarin Chinese and Tongan. Journal of Cognition and Culture, 10(3-4), 283–307.
Beracci, A., & Fabbri, M. (2022). Past on the ground floor and future in the attic: The vertical mental timeline. Journal of Experimental Psychology. Human Perception and Performance, 48(4), 380–399.
pubmed: 35286124
Beracci, A., Santiago, J., & Fabbri, M. (2022). The categorical use of a continuous time representation. Psychological Research, 86, 1015–1028.
pubmed: 34291309
Bergen, B. K., & Lau, T. T. C. (2012). Writing direction affects how people map space onto time. Frontiers in Psychology, 3, 109.
pubmed: 22514546 pmcid: 3322406
Blasi, D. E., Henrich, J., Adamou, E., Kemmerer, D., & Majid, A. (2022). Over-reliance on English hinders cognitive science. Trends in Cognitive Sciences, S1364–6613(22), 00236–00234.
Bock, K., Irwin, D. E., Davidson, D. J., & Levelt, W. J. (2003). Minding the clock. Journal of Memory and Language, 48(4), 653–685.
Bonato, M., Zorzi, M., & Umiltà, C. (2012). When time is space: Evidence for a mental time line. Neuroscience & Biobehavioral Reviews, 36, 2257–2273.
Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263–292.
pubmed: 28095000
Borghi, A. M., Barca, L., Binkofski, F., & Tummolini, L. (2018). Abstract concepts, language and sociality: From acquisition to inner speech. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 373(1752), 20170134.
pubmed: 29915002 pmcid: 6015830
Borghi, A. M., Shaki, S., & Fischer, M. H. (2022). Abstract concepts: External influences, internal constraints, and methodological issues. Psychological Research, 86(4), 1–19.
Boroditsky, L. (2011). How languages construct time. Space, Time and Number in the Brain, 333–341.
Boroditsky, L., & Ramscar, M. (2002). The roles of mind and body in abstract thought. Psychological Science, 13, 185–188.
pubmed: 11934006
Boroditsky, L., Fuhrman, O., & McCormick, K. (2011). Do English and mandarin speakers think about time differently? Cognition, 118, 123–129.
pubmed: 21030013
Bylund, E., Gygax, P., Samuel, S., & Athanasopoulos, P. (2020). Back to the future? The role of temporal focus for mapping time onto space. Quarterly Journal of Experimental Psychology, 73(2), 174–182.
Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731–735.
pubmed: 9751438
Callizo-Romero, C., Tutnjević, S., Pandza, M., Ouellet, M., Kranjec, A., Ilić, S., Gu, Y., Göksun, T., Chahboun, S., Casasanto, D., & Santiago, J. (2020). Temporal focus and time spatialization across cultures. Psychonomic Bulletin & Review, 27(6), 1247–1258.
Casasanto, D. (2009). Embodiment of abstract concepts: Good and bad in right- and left-handers. Journal of Experimental Psychology: General, 138(3), 351–367.
pubmed: 19653795
Casasanto, D., & Bottini, R. (2014). Mirror reading can reverse the flow of time. Journal of Experimental Psychology: General, 143, 473–479.
pubmed: 23773158
Cattaneo, Z., Lega, C., Boehringer, J., Gallucci, M., Girelli, L., & Carbon, C. C. (2014). Happiness takes you right: The effect of emotional stimuli on line bisection. Cognition & Emotion, 28(2), 325–344.
Chen, J. Y., & O'Seaghdha, P. G. (2013). Do mandarin and English speakers think about time differently? Review of existing evidence and some new data. Journal of Chinese Linguistics, 41, 338–358.
Chokron, S., Bartolomeo, P., Perenin, M. T., Helft, G., & Imbert, M. (1998). Scanning direction and line bisection: A study of normal subjects and unilateral neglect patients with opposite reading habits. Cognitive Brain Research, 7(2), 173–178.
pubmed: 9774725
Dalmaso, M., Schnapper, Y., & Vicovaro, M. (2023). When time stands upright: STEARC effects along the vertical axis. Psychological Research, 87, 894–918.
pubmed: 35718808
de la Fuente, J., Santiago, J., Román, A., Dumitrache, C., & Casasanto, D. (2014). When you think about it, your past is in front of you: How culture shapes spatial conceptions of time. Psychological Science, 25(9), 1682–1690.
pubmed: 25052830
Di Bono, M. G., & Zorzi, M. (2013). The spatial representation of numerical and non-numerical ordered sequences: Insights from a random generation task. Quarterly Journal of Experimental Psychology, 66(12), 2348–2362.
Ding, X., Feng, N., Cheng, X., Liu, H., & Fan, Z. (2015). Are past and future symmetric in mental time line? Frontiers in Psychology, 6, 208.
pubmed: 25767457 pmcid: 4341513
Ding, X., Feng, N., He, T., Cheng, X., & Fan, Z. (2020). Can mental time lines co-exist in 3D space? Acta Psychologica, 207(1), 103084.
pubmed: 32408141
Dodd, M. D., Van der Stigchel, S., Adil Leghari, M., Fung, G., & Kingstone, A. (2008). Attentional SNARC: There's something special about numbers (let us count the ways). Cognition, 108(3), 810–818.
pubmed: 18538756
Eikmeier, V., Alex-Ruf, S., Maienborn, C., & Ulrich, R. (2015). How strongly linked are mental time and space along the left-right axis? Journal of Experimental Psychology: Learning Memory and Cognition, 41(6), 1878–1883.
pubmed: 25961360
Fabbri, M., & Guarini, A. (2016). Finger counting habit and spatial-numerical association in children and adults. Consciousness and Cognition, 40, 45–53.
pubmed: 26748025
Faulkenberry, T. J., Witte, M., & Hartmann, M. (2018). Tracking the continuous dynamics of numerical processing: A brief review and editorial. Journal of Numerical Cognition, 4(2), 271–285.
Fischer, M. H. (2001a). Cognition in the bisection task. Trends in Cognitive Sciences, 5(11), 460–462.
pubmed: 11684466
Fischer, M. H. (2001b). Number processing induces spatial performance biases. Neurology, 57, 822–826.
pubmed: 11552011
Fischer, M. H., & Hartmann, M. (2014). Pushing forward in embodied cognition: May we mouse the mathematical mind? Frontiers in Psychology, 5, 1315.
pubmed: 25477841 pmcid: 4238369
Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology, 61(6), 825–850.
Flumini, A., & Santiago, J. (2013). Time (also) flies from left to right … if it is needed! Proceedings of the 36th Annual Conference of the Cognitive Science Society. Austin, Cognitive Science Society (pp. 2315–2320).
Franklin, M. S., Jonides, J., & Smith, E. E. (2009). Processing of order information for numbers and months. Memory & Cognition, 37, 644–654.
Fuhrman, O., & Boroditsky, L. (2010). Cross-cultural differences in mental representations of time: Evidence from an implicit nonlinguistic task. Cognitive Science, 34, 143–1451.
Gentner, D., Imai, M., & Boroditsky, L. (2002). As time goes by: Evidence for two systems in processing space → time metaphors. Language and Cognitive Processes, 17(5), 537–565.
Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. ​Cognition, ​87(3), 87–95.
Gevers, W., Reynvoet, B., & Fias, W. (2004). The mental representation of ordinal sequences is spatially organized: Evidence from days of the week. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 40(1), 171–172.
pubmed: 15174454
Goolkasian, P., & Park, D. C. (1980). Processing of visually presented clock times. Journal of Experimental Psychology: Human Perception and Performance, 6(4), 707–717.
pubmed: 6449538
Grasso, C. L., Ziegler, J. C., Mirault, J., Coull, J. T., & Montant, M. (2022). As time goes by: Space-time compatibility effects in word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(2), 304–319.
pubmed: 33829839
Hartmann, M. (2017). Non-musicians also have a piano in the head: Evidence for spatial-musical associations from line bisection tracking. Cognitive Processing, 18(1), 75–80.
pubmed: 27696101
Haslbeck, J., Wood, G., & Witte, M. (2016). Temporal dynamics of number-space interaction in line bisection: Comment on Cleland and Bull (2015). Quarterly Journal of Experimental Psychology, 69(6), 1–7.
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301–307.
pubmed: 14741110
He, D., He, X., Zhao, T., Wang, J., Li, L., & Louwerse, M. (2020). Does number perception cause automatic shifts of spatial attention? A study of the Att-SNARC effect in numbers and Chinese months. Frontiers in Psychology, 11, 680.
pubmed: 32477200 pmcid: 7235174
Hoffman, P. (2016). The meaning of 'life' and other abstract words: Insights from neuropsychology. Journal of Neuropsychology, 10(2), 317–343.
pubmed: 25708527
Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex, 44, 454–461.
pubmed: 18387578
Ishihara, M., Revol, P., Jacquin-Courtois, S., Mayet, R., Rode, G., Boisson, D., Farnè, A., & Rossetti, Y. (2013). Tonal cues modulate line bisection performance: Preliminary evidence for a new rehabilitation prospect? Frontiers in Psychology, 4, 704.
pubmed: 24109467 pmcid: 3791388
Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110.
pubmed: 10617294
Kamide, Y., Lindsay, S., Scheepers, C., & Kukona, A. (2016). Event processing in the visual world: Projected motion paths during spoken sentence comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 804–812.
pubmed: 26478958
Kolesari, J., & Carlson, L. (2018). How the physicality of space affects how we think about time. Memory & Cognition, 46, 438–449.
Kopár, L. (2010). Spatial understanding of time in early Germanic cultures: The evidence of old English time words and Norse mythology. Interfaces Between Language and Culture in Medieval England, 48, 203–230.
Laeng, B., & Hofseth, A. (2019). Where are the months? Mental images of circular time in a large online sample. Frontiers in Psychology, 10, 2634.
pubmed: 31849757 pmcid: 6892832
Lakoff, G. (1993). The contemporary theory of metaphor. In A. Ortony (Ed.), Metaphor and thought (pp. 202–251). Cambridge University Press.
Lega, C., Cattaneo, Z., Merabet, L. B., Vecchi, T., & Cucchi, S. (2014). The effect of musical expertise on the representation of space. Frontiers in Human Neuroscience, 8, 1–9.
Leone, M. J., Salles, A., Pulver, A., Golombek, D. A., & Sigman, M. (2018). Time drawings: Spatial representation of temporal concepts. Consciousness and Cognition: An International Journal, 59, 10–25.
Lynott, D., Connell, L., Brysbaert, M., Brand, J., & Carney, J. (2020). The Lancaster sensorimotor norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52(3), 1271–1291.
pubmed: 31832879
Maienborn, C., Alex-Ruf, S., Eikmeier, V., & Ulrich, R. (2015). Do we map remembrances to the left/back and expectations to the right/front of a mental timeline? Space–time congruency effects with retrospective and prospective verbs. Acta Psychologica, 156, 168–178.
pubmed: 25499821
Malyshevskaya, A., Gallo, F., Scheepers, C., Shtyrov, Y., & Myachykov, A. (2022). Mapping of individual time units in horizontal space. Language and Cognition, 1–21.
Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48(7), 788–804.
pubmed: 21163473
Matlock, T., Ramscar, M., & Boroditsky, L. (2005). On the experiential link between spatial and temporal language. Cognitive Science, 29(4), 655–664.
pubmed: 21702788
Mattek, A. M., Whalen, P. J., Berkowitz, J. L., & Freeman, J. B. (2016). Differential effects of cognitive load on subjective versus motor responses to ambiguously valenced facial expressions. Emotion, 16(6), 929–936.
pubmed: 27148846 pmcid: 5009000
Miles, L. K., Betka, E., Pendry, L. F., & Macrae, C. N. (2010). Mapping temporal constructs: Actions reveal that time is a place. Quarterly Journal of Experimental Psychology, 63(11), 2113–2119.
Miles, L. K., Tan, L., Noble, G. D., Lumsden, J., & Macrae, C. N. (2011). Can a mind have two time lines? Exploring space–time mapping in mandarin and English speakers. Psychonomic Bulletin & Review, 18, 598–604.
Milhau, A., Brouillet, T., Dru, V., Coello, Y., & Brouillet, D. (2017). Valence activates motor fluency simulation and biases perceptual judgment. Psychological Research, 81, 795–805.
pubmed: 27417215
Mkrtychian, N., Blagovechtchenski, E., Kurmakaeva, D., Gnedykh, D., Kostromina, S., & Shtyrov, Y. (2019). Concrete vs. abstract semantics: From mental representations to functional brain mapping. Frontiers in Human Neuroscience, 13, 267.
pubmed: 31427938 pmcid: 6687846
Montefinese, M. (2019). Semantic representation of abstract and concrete words: A minireview of neural evidence. Journal of Neurophysiology, 121(5), 1585–1587.
pubmed: 30785804
Myachykov, A., Scheepers, C., Fischer, M. H., & Kessler, K. (2014). TEST: A tropic, embodied, situated theory of cognition. Topics in Cognitive Science, 6, 442–460.
pubmed: 23616259
Myachykov, A., Cangelosi, A., Ellis, R., & Fischer, M. H. (2015). The oculomotor resonance effect in spatial-numerical mapping. Acta Psychologica, 161, 162–169.
pubmed: 26398486
Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2016). Ocular drift along the mental number line. Psychological Research, 80, 379–388.
pubmed: 26724955 pmcid: 4826417
Núñez, R. E., & Sweetser, E. (2006). With the future behind them: Convergent evidence from Aymara language and gesture in the cross-linguistic comparison of spatial construals of time. ​Cognitive Sciences, 30, 401–450.
Núñez, R. E., Cooperrider, K., Doan, D., & Wassmann, J. (2012). Contours of time: Topographic construals of past, present, and future in the Yupno valley of Papua New Guinea. Cognition, 124, 25–35.
pubmed: 22542697
Ouellet, M., Santiago, J., Israeli, Z., & Gabay, S. (2010a). Is the future the right time? Experimental Psychology, 57(4), 308–314.
pubmed: 20178942
Ouellet, M., Santiago, J., Funes, M. J., & Lupiáñez, J. (2010b). Thinking about the future moves attention to the right. Journal of Experimental Psychology: Human, Perception and Performance, 36, 17–24.
pubmed: 20121292
Pitt, B., & Casasanto, D. (2020). The correlations in experience principle: How culture shapes concepts of time and number. Journal of Experimental Psychology: General, 149(6), 1048–1070.
pubmed: 31633369
Posner, M. I. (1978). Chronometric explorations of mind. Lawrence Erlbaum.
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.
pubmed: 7367577
Price, M. C., & Mentzoni, R. A. (2008). Where is January? The month-SNARC effect in sequence-form synaesthetes. Cortex, 44(7), 890–907.
pubmed: 18489968
Pulvermüller, F. (1999). Words in the brain’s language. Behavioral and Brain Sciences, 22, 253–279.
pubmed: 11301524
Ristic, J., Wright, A., & Kingstone, A. (2006). The number line effect reflects top-down control. Psychonomic Bulletin & Review, 13, 862–868.
R Core Team. (2020). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. https://www.R-project.org/
Ruiz Fernández, S., Lachmair, M., & Rahona, J. J. (2014). Human mental representation of time in the vertical space. Proceedings of the 6th International Congress of Medicine in Space and Extreme Environments (ICMS).
Santiago, J., Lupiáñez, J., Pérez, E., & Funes, M. J. (2007). Time (also) flies from left to right. Psychonomic Bulletin & Review, 14, 512–516.
Santiago, J., Román, A., Ouellet, M., Rodríguez, N., & Pérez-Azor, P. (2010). In hindsight, life flows from left to right. Psychological Research Psychologische Forschung, 74, 59–70.
pubmed: 19104828
Seymour, P. H. K. (1980). Internal representations of the months: An experimental analysis of spatial forms. Psychological Research, 42, 255–273.
Shaki, S., & Fischer, M. H. (2023). How does language affect spatial attention? Deconstructing the prime-target relationship. Memory & Cognition, 51, 1115–1124.
Sixtus, E., Krause, F., Lindemann, O., & Fischer, M. H. (2023). A sensorimotor perspective on numerical cognition. Trends in Cognitive Sciences, 27(4), 367–378.
pubmed: 36764902
Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time cognition. Current Directions in Psychological Science, 15(5), 207–211.
Starr, A., & Srinivasan, M. (2021). The future is in front, to the right, or below: Development of spatial representations of time in three dimensions. Cognition, 210, 104603. https://doi.org/10.1016/j.cognition.2021.104603
doi: 10.1016/j.cognition.2021.104603 pubmed: 33486438 pmcid: 8009816
Tamagni, C., Mantei, T., & Brugger, P. (2009). Emotion and space: Lateralized emotional word detection depends on line bisection bias. Neuroscience, 162(4), 1101–1105.
pubmed: 19501133
Teghil, A., Marc, I. B., & Boccia, M. (2021). Mental representation of autobiographical memories along the sagittal mental timeline: Evidence from spatiotemporal interference. Psychonomic Bulletin & Review, 28, 1327–1335.
Topić, V., Stojić, S., & Domijan, D. (2022). An implicit task reveals space-time associations along vertical and diagonal axes. Psychological Research, 86(4), 1252–1261.
pubmed: 34327600
Tower-Richardi, S. M., Brunyé, T. T., Gagnon, S. A., Mahoney, C. R., & Taylor, H. A. (2012). Abstract spatial concept priming dynamically influences real-world actions. Frontiers in Psychology, 3, 361.
pubmed: 23060831 pmcid: 3459017
Torralbo, A., Santiago, J., & Lupiáñez, J. (2006). Flexible conceptual projection of time onto spatial frames of reference. Cognitive Science, 30, 745–757.
pubmed: 21702834
Ulrich, R., & Maienborn, C. (2010). Left–right coding of past and future in language: The mental timeline during sentence processing. Cognition, 117, 126–138.
pubmed: 20850112
Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meanings of object and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48, 422–488.
pubmed: 15099798
von Sobbe, L., Scheifele, E., Maienborn, C., & Ulrich, R. (2019). The Space–Time Congruency Effect: A Meta-Analysis. Cognitive Science, 43(1), e12709.
Vuilleumier, P., Ortigue, S., & Brugger, P. (2004). The number space and neglect. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 40(2), 399–410.
pubmed: 15156797
Walker, E., & Cooperrider, K. (2016). The continuity of metaphor: Evidence from temporal gestures. Cognitive Science, 40(2), 481–495.
pubmed: 26059310
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.
pubmed: 14585444
Walsh, V. (2015). A theory of magnitude: The parts that sum to number. In R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 552–565). Oxford University Press.
Wearden, J. H. (1991). Human performance on an analogue of an interval bisection task. The Quarterly Journal of Experimental Psychology, 43B(1), 59–81.
Wei, J., Carroll, R. J., Harden, K. K., & Wu, G. (2012). Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids, 42(5), 2031–2035.
pubmed: 21547361
Wilcox, R. R. (1987). New designs in analysis of variance. Annual Review of Psychology, 38, 29–60.
Wulff, D. U., Kieslich, P. J., Henninger, F., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2021). Movement tracking of cognitive processes: A tutorial using mousetrap. Preprint.
Zorzi, M., Priftis, K., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). The spatial representation of numerical and non-numerical sequences: Evidence from neglect. Neuropsychologia, 44(7), 1061–1067.
pubmed: 16356515

Auteurs

Anastasia Malyshevskaya (A)

Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476, Potsdam-Golm, Germany. malyshevskaya.com@gmail.com.
Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Krivokolenniy Pereulok 3, Entrance 2, Moscow, Russian Federation, 101000. malyshevskaya.com@gmail.com.

Alex Miklashevsky (A)

Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476, Potsdam-Golm, Germany.

Martin H Fischer (MH)

Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476, Potsdam-Golm, Germany.

Christoph Scheepers (C)

School of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.

Yury Shtyrov (Y)

Center of Functionally Integrative Neuroscience (CFIN), Institute for Clinical Medicine Aarhus University, Universitetsbyen 3, bldg 1719, 8000, Aarhus, Denmark.

Andriy Myachykov (A)

Department of Psychology, Northumbria University, Northumberland Building, Newcastle upon Tyne, NE1 8ST, UK.

Classifications MeSH