Fetal brain response to worsening acidosis: an experimental study in a fetal sheep model of umbilical cord occlusions.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 Dec 2023
27 Dec 2023
Historique:
received:
15
03
2023
accepted:
08
12
2023
medline:
29
12
2023
pubmed:
29
12
2023
entrez:
28
12
2023
Statut:
epublish
Résumé
Perinatal anoxia remains an important public health problem as it can lead to hypoxic-ischaemic encephalopathy (HIE) and cause significant neonatal mortality and morbidity. The mechanisms of the fetal brain's response to hypoxia are still unclear and current methods of in utero HIE prediction are not reliable. In this study, we directly analysed the brain response to hypoxia in fetal sheep using in utero EEG. Near-term fetal sheep were subjected to progressive hypoxia induced by repeated umbilical cord occlusions (UCO) at increasing frequency. EEG changes during and between UCO were analysed visually and quantitatively, and related with gasometric and haemodynamic data. EEG signal was suppressed during occlusions and progressively slowed between occlusions with the increasing severity of the occlusions. Per-occlusion EEG suppression correlated with per-occlusion bradycardia and increased blood pressure, whereas EEG slowing and amplitude decreases correlated with arterial hypotension and respiratory acidosis. The suppression of the EEG signal during cord occlusion, in parallel with cardiovascular adaptation could correspond to a rapid cerebral adaptation mechanism that may have a neuroprotective role. The progressive alteration of the signal with the severity of the occlusions would rather reflect the cerebral hypoperfusion due to the failure of the cardiovascular adaptation mechanisms.
Identifiants
pubmed: 38155199
doi: 10.1038/s41598-023-49495-2
pii: 10.1038/s41598-023-49495-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23050Informations de copyright
© 2023. The Author(s).
Références
Thornberg, E., Thiringer, K., Odeback, A. & Milsom, I. Birth asphyxia: Incidence, clinical course and outcome in a Swedish population. Acta Paediatr. Oslo Nor. 84(8), 927–932 (1995).
doi: 10.1111/j.1651-2227.1995.tb13794.x
Wu, Y. W., Backstrand, K., Zhao, S., Fullerton, H. & Johnston, S. Declining diagnosis of birth asphyxia in California: 1991–2000. Pediatrics 114, 1584 (2004).
pubmed: 15574618
doi: 10.1542/peds.2004-0708
Pierrat, V. et al. Prevalence, causes, and outcome at 2 years of age of newborn encephalopathy: Population based study. Arch. Dis. Child Fetal Neonatal Ed. 90(3), F257–F261 (2005).
pubmed: 15846019
pmcid: 1721886
doi: 10.1136/adc.2003.047985
Garne, E., Vain-Nielsen, N., Hansen, A. V. & Fenger-Grøn, J. Birth asphyxia in a Danish hospital uptake area was reduced after centralisation of deliveries. Dan. Med. J. 65(2), A5443 (2018).
pubmed: 29393037
Graham, E. M. et al. Diagnostic accuracy of fetal heart rate monitoring in the identification of neonatal encephalopathy. Obstet. Gynecol. 124(3), 507–513 (2014).
pubmed: 25162250
pmcid: 4147668
doi: 10.1097/AOG.0000000000000424
Ross, M. G. Threshold of metabolic acidosis associated with newborn cerebral palsy: Medical legal implications. Am. J. Obstet. Gynecol. 220(4), 348–353 (2019).
pubmed: 30529344
doi: 10.1016/j.ajog.2018.11.1107
Morrison, J. L. et al. Improving pregnancy outcomes in humans through studies in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315(6), R1123–R1153 (2018).
pubmed: 30325659
doi: 10.1152/ajpregu.00391.2017
Bernhard, C. G., Kaiser, I. H. & Kolmodin, G. M. On the development of cortical activity in fetal sheep. Acta Physiol. Scand. 47, 333–349 (1959).
pubmed: 13799738
Jones, M. D. Energy metabolism in the developing brain. Semin. Perinatol. 3(2), 121–129 (1979).
pubmed: 115093
Clewlow, F., Dawes, G. S., Johnston, B. M. & Walker, D. W. Changes in breathing, electrocortical and muscle activity in unanaesthetized fetal lambs with age. J. Physiol. 341, 463–476 (1983).
pubmed: 6413680
pmcid: 1195345
doi: 10.1113/jphysiol.1983.sp014817
Williams, C. E., Gunn, A. & Gluckman, P. D. Time course of intracellular edema and epileptiform activity following prenatal cerebral ischemia in sheep. Stroke 22(4), 516–521 (1991).
pubmed: 2024281
doi: 10.1161/01.STR.22.4.516
Davidson, J. O. et al. How long is too long for cerebral cooling after ischemia in fetal sheep? J. Cereb. Blood Flow Metab. 35(5), 751–758 (2015).
pubmed: 25605291
pmcid: 4420857
doi: 10.1038/jcbfm.2014.259
Lotgering, F. K. et al. Ten-minute umbilical cord occlusion markedly reduces cerebral blood flow and heat production in fetal sheep. Am. J. Obstet. Gynecol. 189(1), 233–238 (2003).
pubmed: 12861168
doi: 10.1067/mob.2003.440
Bennet, L. et al. The effect of cerebral hypothermia on white and grey matter injury induced by severe hypoxia in preterm fetal sheep. J. Physiol. 578(Pt 2), 491–506 (2007).
pubmed: 17095565
doi: 10.1113/jphysiol.2006.119602
Frasch, M. G., Keen, A. E., Gagnon, R., Ross, M. G. & Richardson, B. S. Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: A prospective study in the ovine fetus near term. PLoS ONE 6(7), e22100 (2011).
pubmed: 21789218
pmcid: 3137606
doi: 10.1371/journal.pone.0022100
Kaneko, M., White, S., Homan, J. & Richardson, B. Cerebral blood flow and metabolism in relation to electrocortical activity with severe umbilical cord occlusion in the near-term ovine fetus. Am. J Obstet. Gynecol. 188(4), 961–972 (2003).
pubmed: 12712094
doi: 10.1067/mob.2003.219
Frasch, M. G., Mansano, R. Z., Gagnon, R., Richardson, B. S. & Ross, M. G. Measures of acidosis with repetitive umbilical cord occlusions leading to fetal asphyxia in the near-term ovine fetus. Am. J. Obstet. Gynecol. 200(2), e1–e7 (2009).
doi: 10.1016/j.ajog.2008.10.022
Garabedian, C. et al. Exploring fetal response to acidosis in ewes: Choosing an adequate experimental model. J. Gynecol. Obstet. Hum. Reprod. 47(8), 397–403 (2018).
pubmed: 29654942
doi: 10.1016/j.jogoh.2018.04.007
Ghesquière, L. et al. Parasympathetic nervous system response to acidosis: Evaluation in an experimental fetal sheep model. Acta Obstet. Gynecol. Scand. 98(4), 433–439 (2019).
pubmed: 30566227
doi: 10.1111/aogs.13515
Ghesquière, L. et al. Associations between fetal heart rate variability and umbilical cord occlusions-induced neural injury: An experimental study in a fetal sheep model. Acta Obstet. Gynecol. Scand. 101(7), 758–770 (2022).
pubmed: 35502642
pmcid: 9564451
doi: 10.1111/aogs.14352
Vanspranghels, R. et al. Autonomic response to fetal acidosis using an experimental sheep model. Eur. J. Obstet. Gynecol. Reprod. Biol. 246, 151–155 (2020).
pubmed: 32028142
doi: 10.1016/j.ejogrb.2020.01.018
Frasch, M. G. et al. Adaptive shut-down of EEG activity predicts critical acidemia in the near-term ovine fetus. Physiol. Rep. 3, 7 (2015).
doi: 10.14814/phy2.12435
Ruth, V. J. & Raivio, K. O. Perinatal brain damage: Predictive value of metabolic acidosis and the Apgar score. Br. Med. J. 297(6640), 24–27 (1988).
doi: 10.1136/bmj.297.6640.24
Low, J. A., Lindsay, B. G. & Derrick, E. J. Threshold of metabolic acidosis associated with newborn complications. Am. J. Obstet. Gynecol. 177(6), 1391–1394 (1997).
pubmed: 9423740
doi: 10.1016/S0002-9378(97)70080-2
King, T. A. et al. The effect of profound umbilical artery acidemia in term neonates admitted to a newborn nursery. J. Pediatr. 132(4), 624–629 (1998).
pubmed: 9580760
doi: 10.1016/S0022-3476(98)70350-6
Murray, D. M. et al. Persistent lactic acidosis in neonatal hypoxic–ischaemic encephalopathy correlates with EEG grade and electrographic seizure burden. Arch. Dis. Child Fetal Neonatal Ed. 93(3), F183–F186 (2008).
pubmed: 17132680
doi: 10.1136/adc.2006.100800
Lacan, L. et al. Fetal sheep cerebral electrical activity: A new technique to record EEG. J. Neurosci. Methods 345, 108888 (2020).
pubmed: 32755616
doi: 10.1016/j.jneumeth.2020.108888
Ghesquière, L., De Jonckheere, J., Storme, L. & Garabedian, C. Measurement of fetal parasympathetic activity during labor: A new pathway for evaluation of fetal well-being? Am. J. Physiol. Regul. Integr. Comp. Physiol. 320, 467 (2020).
doi: 10.1152/ajpregu.00325.2020
Garabedian, C. et al. Correlation of a new index reflecting the fluctuation of parasympathetic tone and fetal acidosis in an experimental study in a sheep model. PLoS ONE 13(1), e0190463 (2018).
pubmed: 29320537
pmcid: 5761865
doi: 10.1371/journal.pone.0190463
Hamoud, Y. et al. Changes in S100B and troponin levels in a fetal sheep model of worsening acidosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 264, 173–177 (2021).
pubmed: 34304026
doi: 10.1016/j.ejogrb.2021.06.042
Kawagoe, Y., Green, L., White, S. & Richardson, B. Intermittent umbilical cord occlusion in the ovine fetus near term: Effects on behavioral state activity. Am. J. Obstet. Gynecol. 181(6), 1520–1529 (1999).
pubmed: 10601938
doi: 10.1016/S0002-9378(99)70399-6
Fraser, M. et al. Cortical electroencephalogram suppression is associated with post-ischemic cortical injury in 0.65 gestation fetal sheep. Dev. Brain Res. 154(1), 45–55 (2005).
doi: 10.1016/j.devbrainres.2004.10.002
Mallard, E. C., Gunn, A. J., Williams, C. E., Johnston, B. M. & Gluckman, P. D. Transient umbilical cord occlusion causes hippocampal damage in the fetal sheep. Am. J. Obstet. Gynecol. 167(5), 1423–1430 (1992).
pubmed: 1443000
doi: 10.1016/S0002-9378(11)91728-1
Reddy, K. et al. Maturational change in the cortical response to hypoperfusion injury in the fetal sheep. Pediatr. Res. 43(5), 674–682 (1998).
pubmed: 9585015
doi: 10.1203/00006450-199805000-00017
Pulgar, V. M., Zhang, J., Massmann, G. A. & Figueroa, J. P. Mild chronic hypoxia modifies the fetal sheep neural and cardiovascular responses to repeated umbilical cord occlusion. Brain Res. 1176, 18–26 (2007).
pubmed: 17888891
pmcid: 2078604
doi: 10.1016/j.brainres.2007.07.089
Wassink, G., Bennet, L., Davidson, J. O., Westgate, J. A. & Gunn, A. J. Pre-existing hypoxia is associated with greater EEG suppression and early onset of evolving seizure activity during brief repeated asphyxia in near-term fetal sheep. PLoS ONE 8(8), e73895 (2013).
pubmed: 23991209
pmcid: 3749175
doi: 10.1371/journal.pone.0073895
De Haan, H. H., Gunn, A. J., Williams, C. E. & Gluckman, P. D. Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr. Res. 41(1), 96–104 (1997).
pubmed: 8979296
doi: 10.1203/00006450-199701000-00015
Wang, X., Durosier, L. D., Ross, M. G., Richardson, B. S. & Frasch, M.G. Online Detection of Fetal Acidemia During Labour by Testing Synchronization of EEG and Heart Rate: A Prospective Study in Fetal Sheep. https://core.ac.uk/display/90363840 (2020).
Connor, C. W. A forensic disassembly of the BIS monitor. Anesth. Analg. 131(6), 1923–1933 (2020).
pubmed: 33093360
pmcid: 7669712
doi: 10.1213/ANE.0000000000005220
Lee, S. J. et al. Fetal cerebral blood flow, electrocorticographic activity, and oxygenation: Responses to acute hypoxia. J. Physiol. 587(9), 2033–2047 (2009).
pubmed: 19406885
pmcid: 2689341
doi: 10.1113/jphysiol.2009.166983
Giussani, D. A. et al. Dynamics of cardiovascular responses to repeated partial umbilical cord compression in late-gestation sheep fetus. Am. J. Physiol. Heart Circ. Physiol. 273(5), H2351–H2360 (1997).
doi: 10.1152/ajpheart.1997.273.5.H2351
Bartelds, B., van Bel, F., Teitel, D. F. & Rudolph, A. M. Carotid, not aortic, chemoreceptors mediate the fetal cardiovascular response to acute hypoxemia in lambs. Pediatr. Res. 34(1), 51–55 (1993).
pubmed: 8356019
doi: 10.1203/00006450-199307000-00013
Newman, J. P., Peebles, D. M. & Hanson, M. A. Adenosine produces changes in cerebral hemodynamics and metabolism as assessed by near-infrared spectroscopy in late-gestation fetal sheep in utero. Pediatr. Res. 50(2), 217–221 (2001).
pubmed: 11477206
doi: 10.1203/00006450-200108000-00009
Nguyen, P. N., Yan, E. B., Castillo-Melendez, M., Walker, D. W. & Hirst, J. J. Increased allopregnanolone levels in the fetal sheep brain following umbilical cord occlusion. J. Physiol. 560(Pt 2), 593–602 (2004).
pubmed: 15331682
pmcid: 1665267
doi: 10.1113/jphysiol.2004.069336
Hunter, C. J. et al. Key neuroprotective role for endogenous adenosine A1 receptor activation during asphyxia in the fetal sheep. Stroke 34(9), 2240–2245 (2003).
pubmed: 12933964
doi: 10.1161/01.STR.0000083623.77327.CE
Bennet, L. et al. Regulation of cytochrome oxidase redox state during umbilical cord occlusion in preterm fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292(4), R1569–R1576 (2007).
pubmed: 17170231
doi: 10.1152/ajpregu.00743.2006
Fisher, D. J. Acidaemia reduces cardiac output and left ventricular contractility in conscious lambs. J. Dev. Physiol. 8(1), 23–31 (1986).
pubmed: 3958441
Lewinsky, R. M. Cardiac systolic time intervals and other parameters of myocardial contractility as indices of fetal acid-base status. Baillieres Clin. Obstet. Gynaecol. 8(3), 663–681 (1994).
pubmed: 7813134
doi: 10.1016/S0950-3552(05)80204-4
Gunn, A. J. et al. Delayed hypotension and subendocardial injury after repeated umbilical cord occlusion in near-term fetal lambs. Am. J. Obstet. Gynecol. 183(6), 1564–1572 (2000).
pubmed: 11120529
doi: 10.1067/mob.2000.108084
Yumoto, Y. et al. Noninvasive measurement of isovolumetric contraction time during hypoxemia and acidemia: Fetal lamb validation as an index of cardiac contractility. Early Hum. Dev. 81(7), 635–642 (2005).
pubmed: 15970405
doi: 10.1016/j.earlhumdev.2005.04.004
Bennet, L., Rossenrode, S., Gunning, M. I., Gluckman, P. D. & Gunn, A. J. The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J. Physiol. 517(Pt 1), 247 (1999).
pubmed: 10226163
pmcid: 2269318
doi: 10.1111/j.1469-7793.1999.0247z.x
Wilson, P. C., Philpott, R. H., Spies, S., Ahmed, Y. & Kadichza, M. The effect of fetal head compression and fetal acidaemia during labour on human fetal cerebral function as measured by the fetal electroencephalogram. BJOG Int. J. Obstet. Gynaecol. 86(4), 269–277 (1979).
doi: 10.1111/j.1471-0528.1979.tb11254.x
Pospelov, A. S., Puskarjov, M., Kaila, K. & Voipio, J. Endogenous brain-sparing responses in brain pH and PO2 in a rodent model of birth asphyxia. Acta Physiol. Oxf. Engl. 229(3), e13467 (2020).
doi: 10.1111/apha.13467
Ala-Kurikka, T. et al. A physiologically validated rat model of term birth asphyxia with seizure generation after, not during, brain hypoxia. Epilepsia 62(4), 908–919 (2021).
pubmed: 33338272
doi: 10.1111/epi.16790
Gailus, B. et al. Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia 62(11), 2826–2844 (2021).
pubmed: 34458992
doi: 10.1111/epi.17050
Gold, N., Herry, C. L., Wang, X. & Frasch, M. G. Fetal cardiovascular decompensation during labor predicted from the individual heart rate tracing: A machine learning approach in near-term fetal sheep model. Front. Pediatr. 9, 593889 (2021).
pubmed: 34026680
pmcid: 8132964
doi: 10.3389/fped.2021.593889
Pulgar, V. M., Zhang, J., Massmann, G. A. & Figueroa, J. P. Prolonged mild hypoxia alters fetal sheep electrocorticogram activity. J. Soc. Gynecol. Investig. 13(6), 404–411 (2006).
pubmed: 16879989
doi: 10.1016/j.jsgi.2006.05.007
Stevenson, D. K., Benitz, W. E., Sunshine, P., Hintz, S. R. & Druzin, M. L. Fetal and Neonatal Brain Injury 855 (Cambridge University Press, 2017).
doi: 10.1017/9781316275498
Lacan, L. et al. Quantitative approach to early neonatal EEG visual analysis in hypoxic-ischemic encephalopathy severity: Bridging the gap between eyes and machine. Neurophysiol. Clin. Clin. Neurophysiol. 51(2), 121–131 (2021).
doi: 10.1016/j.neucli.2020.12.003