Copper pyrithione and zinc pyrithione induce cytotoxicity and neurotoxicity in neuronal/astrocytic co-cultured cells via oxidative stress.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 Dec 2023
Historique:
received: 11 09 2023
accepted: 11 12 2023
medline: 29 12 2023
pubmed: 29 12 2023
entrez: 28 12 2023
Statut: epublish

Résumé

Previous studies on copper pyrithione (CPT) and zinc pyrithione (ZPT) as antifouling agents have mainly focused on marine organisms. Even though CPT and ZPT pose a risk of human exposure, their neurotoxic effects remain to be elucidated. Therefore, in this study, the cytotoxicity and neurotoxicity of CPT and ZPT were evaluated after the exposure of human SH-SY5Y/astrocytic co-cultured cells to them. The results showed that, in a co-culture model, CPT and ZPT induced cytotoxicity in a dose-dependent manner (~ 400 nM). Exposure to CPT and ZPT suppressed all parameters in the neurite outgrowth assays, including neurite length. In particular, exposure led to neurotoxicity at concentrations with low or no cytotoxicity (~ 200 nM). It also downregulated the expression of genes involved in neurodevelopment and maturation and upregulated astrocyte markers. Moreover, CPT and ZPT induced mitochondrial dysfunction and promoted the generation of reactive oxygen species. Notably, N-acetylcysteine treatment showed neuroprotective effects against CPT- and ZPT-mediated toxicity. We concluded that oxidative stress was the major mechanism underlying CPT- and ZPT-induced toxicity in the co-cultured cells.

Identifiants

pubmed: 38155222
doi: 10.1038/s41598-023-49740-8
pii: 10.1038/s41598-023-49740-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23060

Subventions

Organisme : Korea Environmental Industry and Technology Institute
ID : 2021003310003
Organisme : Korea Institute of Toxicology
ID : 1711159817

Informations de copyright

© 2024. The Author(s).

Références

Amara, I., Miled, W., Slama, R. B. & Ladhari, N. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 57, 115–130 (2018).
pubmed: 29258017 doi: 10.1016/j.etap.2017.12.001
Qian, P. Y., Chen, L. & Xu, Y. Mini-review: molecular mechanisms of antifouling compounds. Biofouling 29, 381–400 (2013).
pubmed: 23574197 doi: 10.1080/08927014.2013.776546
Kim, S., Seo, M., Na, M. & Kim, J. Investigation on combined inhalation exposure scenarios to biocidal mixtures: biocidal and household chemical products in South Korea. Toxics 9, 32 (2021).
pubmed: 33557145 pmcid: 7913984 doi: 10.3390/toxics9020032
Schwartz, J. R. Zinc Pyrithione: A topical antimicrobial with complex pharmaceutics. J. Drugs Dermatol. 15, 140–144 (2016).
pubmed: 26885780
Union, E. Copper Pyrithione Product Type 21 88, (2015).
Holmes, A. M., Kempson, I., Turnbull, T., Paterson, D. & Roberts, M. S. Imaging the penetration and distribution of zinc and zinc species after topical application of zinc Pyrithione to human skin. Toxicol. Appl. Pharmacol. 343, 40–47 (2018).
pubmed: 29471083 doi: 10.1016/j.taap.2018.02.012
Shin, H. K. et al. Development of blood brain barrier permeation prediction models for organic and inorganic biocidal active substances. Chemosphere 277, 130330 (2021).
pubmed: 33780678 doi: 10.1016/j.chemosphere.2021.130330
Daina, A., Michielin, O. & Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717 (2017).
pubmed: 28256516 pmcid: 5335600 doi: 10.1038/srep42717
Kladnik, J. et al. Zinc Pyrithione is a potent inhibitor of PL
pubmed: 35943189 pmcid: 9367663 doi: 10.1080/14756366.2022.2108417
Mochida, K. et al. Inhibition of acetylcholinesterase by metabolites of copper Pyrithione (CuPT) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149, 624–630 (2009).
pubmed: 19211040 doi: 10.1016/j.cbpc.2009.01.003
Jeffcoat, A. R. et al. Zinc pyridinethione: urinary metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol. 56, 141–154 (1980).
pubmed: 7444962 doi: 10.1016/0041-008X(80)90139-8
Sahenk, Z. & Mendell, J. R. Ultrastructural study of zinc pyridinethione-induced peripheral neuropathy. J. Neuropathol. Exp. Neurol. 38, 532–550 (1979).
pubmed: 224150 doi: 10.1097/00005072-197909000-00007
Maraldo, K. & Dahllöf, I. Indirect estimation of degradation time for zinc Pyrithione and copper Pyrithione in seawater. Mar. Pollut. Bull. 48, 894–901 (2004).
pubmed: 15111036 doi: 10.1016/j.marpolbul.2003.11.013
Okamura, H., Watanabe, T., Aoyama, I. & Hasobe, M. Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46, 945–951 (2002).
pubmed: 11999777 doi: 10.1016/S0045-6535(01)00204-1
Mochida, K., Amano, H., Onduka, T., Kakuno, A. & Fujii, K. Toxicity and metabolism of copper Pyrithione and its degradation product, 2,2′-dipyridyldisulfide in a marine polychaete. Chemosphere 82, 390–397 (2011).
pubmed: 20965543 doi: 10.1016/j.chemosphere.2010.09.074
Rudolf, E. & Cervinka, M. Stress responses of human dermal fibroblasts exposed to zinc Pyrithione. Toxicol. Lett. 204, 164–173 (2011).
pubmed: 21557991 doi: 10.1016/j.toxlet.2011.04.028
Oyama, T. M., Saito, M., Yonezawa, T., Okano, Y. & Oyama, Y. Nanomolar concentrations of zinc Pyrithione increase cell susceptibility to oxidative stress induced by hydrogen peroxide in rat thymocytes. Chemosphere 87, 1316–1322 (2012).
pubmed: 22356860 doi: 10.1016/j.chemosphere.2012.01.052
Mo, J., Lin, D., Wang, J., Li, P. & Liu, W. Apoptosis in HepG2 cells induced by zinc Pyrithione via mitochondrial dysfunction pathway: involvement of zinc accumulation and oxidative stress. Ecotoxicol. Environ. Saf. 161, 515–525 (2018).
pubmed: 29913420 doi: 10.1016/j.ecoenv.2018.06.026
Mann, J. J. & Fraker, P. J. Zinc Pyrithione induces apoptosis and increases expression of Bim. Apoptosis 10, 369–379 (2005).
pubmed: 15843898 doi: 10.1007/s10495-005-0811-9
EPA. Guidelines for Neurotoxicity Risk Assessment (1998).
Cheung, Y. T. et al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30, 127–135 (2009).
pubmed: 19056420 doi: 10.1016/j.neuro.2008.11.001
Kovalevich, J. & Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 1078, 9–21 (2013).
pubmed: 23975817 pmcid: 5127451 doi: 10.1007/978-1-62703-640-5_2
Radio, N. M. & Mundy, W. R. Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 29, 361–376 (2008).
pubmed: 18403021 doi: 10.1016/j.neuro.2008.02.011
Anderl, J. L., Redpath, S. & Ball, A. J. A neuronal and astrocyte co-culture assay for high content analysis of neurotoxicity. J. Vis. Exp. 27, e1173 (2009).
Oh, H. N. et al. In vitro neurotoxicity evaluation of biocidal disinfectants in a human neuron-astrocyte co-culture model. Toxicol. Vitro 84, 105449 (2022).
doi: 10.1016/j.tiv.2022.105449
Farhy-Tselnicker, I. & Allen, N. J. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev. 13, 7 (2018).
pubmed: 29712572 pmcid: 5928581 doi: 10.1186/s13064-018-0104-y
Batenburg, K. L. et al. A 3D human co-culture to model neuron-astrocyte interactions in tauopathies. Biol. Proced. Online 25, 4 (2023).
pubmed: 36814189 pmcid: 9948470 doi: 10.1186/s12575-023-00194-2
Goshi, N., Kim, H., Girardi, G., Gardner, A. & Seker, E. Electrophysiological activity of primary cortical neuron-glia mixed cultures. Cells 12, 821 (2023).
pubmed: 36899957 pmcid: 10001406 doi: 10.3390/cells12050821
Yu, P. H. & Zuo, D. M. Enhanced tolerance of neuroblastoma cells towards the neurotoxin 6-hydroxydopamine following specific cell-cell interaction with primary astrocytes. Neuroscience 78, 903–912 (1997).
pubmed: 9153668 doi: 10.1016/S0306-4522(96)00582-9
Angelova, P. R., Myers, I. & Abramov, A. Y. Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources. Redox Biol. 60, 102598 (2023).
pubmed: 36640724 pmcid: 9852609 doi: 10.1016/j.redox.2022.102598
Bélanger, M. & Magistretti, P. J. The role of astroglia in neuroprotection. Dial. Clin. Neurosci. 11, 281–295 (2009).
doi: 10.31887/DCNS.2009.11.3/mbelanger
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 360, 201–205 (2017).
pubmed: 27754930 pmcid: 5193071 doi: 10.1124/jpet.116.237503
Sayre, L. M., Perry, G. & Smith, M. A. Oxidative stress and neurotoxicity. Chem. Res. Toxicol. 21, 172–188 (2008).
pubmed: 18052107 doi: 10.1021/tx700210j
Nicholls, D. G. & Budd, S. L. Mitochondria and neuronal survival. Physiol. Rev. 80, 315–360 (2000).
pubmed: 10617771 doi: 10.1152/physrev.2000.80.1.315
Bavarsad Shahripour, R., Harrigan, M. R. & Alexandrov, A. V. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav. 4, 108–122 (2014).
pubmed: 24683506 pmcid: 3967529 doi: 10.1002/brb3.208
Qian, H. R. & Yang, Y. Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC). Acta Pharmacol. Sin. 30, 907–912 (2009).
pubmed: 19574996 pmcid: 4006647 doi: 10.1038/aps.2009.72
Shieh, P., Jan, C. R. & Liang, W. Z. The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide Malathion in normal human astrocytes. Toxicology 417, 1–14 (2019).
pubmed: 30769050 doi: 10.1016/j.tox.2019.02.004
Soleimani Asl, S., Saifi, B., Sakhaie, A., Zargooshnia, S. & Mehdizadeh, M. Attenuation of ecstasy-induced neurotoxicity by N-acetylcysteine. Metab. Brain Dis. 30, 171–181 (2015).
pubmed: 25096201 doi: 10.1007/s11011-014-9598-0
Monti, D. A. et al. N-acetyl cysteine may support dopamine neurons in Parkinson’s disease: Preliminary clinical and cell line data. PLOS ONE 11, e0157602 (2016).
pubmed: 27309537 pmcid: 4911055 doi: 10.1371/journal.pone.0157602
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods 25, 402–408 (2001).
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Sivandzade, F., Bhalerao, A. & Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 9, e3128–e3128 (2019).
pubmed: 30687773 pmcid: 6343665 doi: 10.21769/BioProtoc.3128
Murillo, J. R. et al. Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EuPA Open Proteomics 16, 1–11 (2017).
pubmed: 29900121 pmcid: 5965715 doi: 10.1016/j.euprot.2017.06.001
Opazo, C. M., Greenough, M. A. & Bush, A. I. Copper: from neurotransmission to neuroproteostasis. Front. Aging Neurosci. 6, 143 (2014).
pubmed: 25071552 pmcid: 4080678 doi: 10.3389/fnagi.2014.00143
Choi, S., Hong, D. K., Choi, B. Y. & Suh, S. W. Zinc in the brain: Friend or foe?. Int. J. Mol. Sci. 21, 8941 (2020).
pubmed: 33255662 pmcid: 7728061 doi: 10.3390/ijms21238941
Kardos, J. et al. Copper signalling: Causes and consequences. Cell Commun. Signal 16, 71 (2018).
pubmed: 30348177 pmcid: 6198518 doi: 10.1186/s12964-018-0277-3
Wang, X. & Michaelis, E. K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2, 12 (2010).
pubmed: 20552050 pmcid: 2874397
Weiss, J. H., Sensi, S. L. & Koh, J. Y. Zn
pubmed: 11050320 doi: 10.1016/S0165-6147(00)01541-8
Gyulkhandanyan, A. V., Feeney, C. J. & Pennefather, P. S. Modulation of mitochondrial membrane potential and reactive oxygen species production by copper in astrocytes. J. Neurochem. 87, 448–460 (2003).
pubmed: 14511122 doi: 10.1046/j.1471-4159.2003.02029.x
Chen, T., Li, S., Liang, Z., Li, L. & Guo, H. Effects of copper Pyrithione (CuPT) on apoptosis, ROS production, and gene expression in hemocytes of white shrimp litopenaeus vannamei. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 256, 109323 (2022).
pubmed: 35247531 doi: 10.1016/j.cbpc.2022.109323
Lamore, S. D., Cabello, C. M. & Wondrak, G. T. The topical antimicrobial zinc Pyrithione is a heat shock response inducer that causes DNA damage and PARP-dependent energy crisis in human skin cells. Cell Stress Chaperones 15, 309–322 (2010).
pubmed: 19809895 doi: 10.1007/s12192-009-0145-6
Rudolf, E. & Červinka, M. Zinc Pyrithione induces cellular stress signaling and apoptosis in Hep-2 cervical tumor cells: the role of mitochondria and lysosomes. Biometals 23, 339–354 (2010).
pubmed: 20151177 doi: 10.1007/s10534-010-9302-8
Wolfram, T. et al. N-acetylcysteine as modulator of the essential trace elements copper and zinc. Antioxidants 9, 1117 (2020).
pubmed: 33198336 pmcid: 7696987 doi: 10.3390/antiox9111117
Radio, N. M., Breier, J. M., Shafer, T. J. & Mundy, W. R. Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening. Toxicol. Sci. 105, 106–118 (2008).
pubmed: 18539913 doi: 10.1093/toxsci/kfn114
Rieske, P., Azizi, S. A., Augelli, B., Gaughan, J. & Krynska, B. A population of human brain parenchymal cells express markers of glial, neuronal and early neural cells and differentiate into cells of neuronal and glial lineages. Eur. J. Neurosci. 25, 31–37 (2007).
pubmed: 17241264 doi: 10.1111/j.1460-9568.2006.05254.x
Guo, J., Walss-Bass, C. & Ludueña, R. F. The β isotypes of tubulin in neuronal differentiation. Cytoskeleton 67, 431–441 (2010).
pubmed: 20506160 doi: 10.1002/cm.20455
Triarhou, L. C., Solà, C., Palacios, J. M. & Mengod, G. MAP2 and GAP-43 expression in normal and weaver mouse cerebellum: Correlative immunohistochemical and in situ hybridization studies. Arch. Histol. Cytol. 61, 233–242 (1998).
pubmed: 9756100 doi: 10.1679/aohc.61.233
Kleiman, R., Banker, G. & Steward, O. Development of subcellular mRNA compartmentation in hippocampal neurons in culture. J. Neurosci. 14, 1130–1140 (1994).
pubmed: 7509864 pmcid: 6577594 doi: 10.1523/JNEUROSCI.14-03-01130.1994
Futami, H. & Sakai, R. RET protein promotes non-adherent growth of NB-39-nu neuroblastoma cell line. Cancer Sci. 100, 1034–1039 (2009).
pubmed: 19320641 doi: 10.1111/j.1349-7006.2009.01143.x
Jurga, A. M., Paleczna, M., Kadluczka, J. & Kuter, K. Z. Beyond the GFAP-astrocyte protein markers in the brain. Biomolecules 11, 1361 (2021).
pubmed: 34572572 pmcid: 8468264 doi: 10.3390/biom11091361
Seo, S. R. et al. Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. J. Neurochem. 78, 600–610 (2001).
pubmed: 11483663 doi: 10.1046/j.1471-4159.2001.00438.x
Mangion, S. E., Holmes, A. M. & Roberts, M. S. Targeted delivery of zinc Pyrithione to skin epithelia. Int. J. Mol. Sci. 22, 9730 (2021).
pubmed: 34575891 pmcid: 8465279 doi: 10.3390/ijms22189730
Carraway, R. E. & Dobner, P. R. Zinc Pyrithione induces ERK- and PKC-dependent necrosis distinct from TPEN-induced apoptosis in prostate cancer cells. Biochim. Biophys. Acta 1823, 544–557 (2012).
pubmed: 22027089 doi: 10.1016/j.bbamcr.2011.09.013

Auteurs

Ha-Na Oh (HN)

Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.

Woo-Keun Kim (WK)

Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea. wookkim@kitox.re.kr.
Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea. wookkim@kitox.re.kr.

Classifications MeSH