2019-nCoV MPRO COVID-19 MD simulation boceprevir molecular docking

Journal

Zeitschrift fur Naturforschung. C, Journal of biosciences
ISSN: 1865-7125
Titre abrégé: Z Naturforsch C J Biosci
Pays: Germany
ID NLM: 8912155

Informations de publication

Date de publication:
01 Jan 2024
Historique:
received: 03 09 2023
accepted: 11 12 2023
medline: 29 12 2023
pubmed: 29 12 2023
entrez: 29 12 2023
Statut: aheadofprint

Résumé

Boceprevir drug is a ketoamide serine protease inhibitor with a linear peptidomimetic structure that exhibits inhibition activity against 2019-nCoV main protease. This paper reports electronic properties of boceprevir and its molecular docking as well as molecular dynamics simulation analysis with protein receptor. For this, the equilibrium structure of boceprevir has been obtained by DFT at B3LYP and ωB97XD levels with 6-311+G(d,p) basis set in gas and water mediums. HOMO-LUMO and absorption spectrum analysis have been used to evaluate the boceprevir's toxicity and photosensitivity, respectively. Molecular docking simulation has been performed to test the binding affinity of boceprevir with 2019-nCoV M

Identifiants

pubmed: 38156366
pii: znc-2023-0117
doi: 10.1515/znc-2023-0117
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 Walter de Gruyter GmbH, Berlin/Boston.

Références

Fu, L, Ye, F, Feng, Y, Yu, F, Wang, Q, Wu, Y, et al.. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun 2020;11:4417. https://doi.org/10.1038/s41467-020-18233-x .
doi: 10.1038/s41467-020-18233-x
Zhou, P, Yang, XL, Wang, XG, Hu, B, Zhang, L, Zhang, W, et al.. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–3. https://doi.org/10.1038/s41586-020-2012-7 .
doi: 10.1038/s41586-020-2012-7
Gorbalenya, AE, Baker, SC, Baric, RS, de Groot, RJ, Drosten, C, Gulyaeva, AA, et al.. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536. https://doi.org/10.1038/s41564-020-0695-z .
doi: 10.1038/s41564-020-0695-z
Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it .
Phan, LT, Nguyen, TV, Luong, QC, Nguyen, TV, Nguyen, HT, Le, HQ, et al.. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N Engl J Med 2020;382:872–4. https://doi.org/10.1056/nejmc2001272 .
doi: 10.1056/nejmc2001272
Guan, W, Ni, Z, Hu, Y, Liang, W, Ou, C, He, J, et al.. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20. https://doi.org/10.1056/nejmoa2002032 .
doi: 10.1056/nejmoa2002032
Zhou, F, Yu, T, Du, R, Fan, G, Liu, Y, Liu, Z, et al.. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62. https://doi.org/10.1016/s0140-6736(20)30566-3 .
doi: 10.1016/s0140-6736(20)30566-3
Zhang, L, Lin, D, Sun, X, Curth, U, Drosten, C, Sauerhering, L, et al.. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science 2020;368:409–12. https://doi.org/10.1126/science.abb3405 .
doi: 10.1126/science.abb3405
Chen, YW, Yiu, CPB, Wong, KY. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research 2020;9:129. https://doi.org/10.12688/f1000research.22457.2 .
doi: 10.12688/f1000research.22457.2
ang, H, Xie, W, Xue, X, Yang, K, Ma, J, Liang, W, et al.. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 2005;3:e324. https://doi.org/10.1371/journal.pbio.0030324 .
doi: 10.1371/journal.pbio.0030324
Dyall, J, Gross, R, Kindrachuk, J, Johnson, RF, Olinger, GG, Hensley, LE, et al.. Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies. Drugs 2017;77:1935–66. https://doi.org/10.1007/s40265-017-0830-1 .
doi: 10.1007/s40265-017-0830-1
Ullrich, S, Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020;30:127377. https://doi.org/10.1016/j.bmcl.2020.127377 .
doi: 10.1016/j.bmcl.2020.127377
Rudmann, DG. On-target and off-target-based toxicologic effects. Toxicol Pathol 2013;41:310–14. https://doi.org/10.1177/0192623312464311 .
doi: 10.1177/0192623312464311
Strömich, L, Wu, N, Barahona, M, Yaliraki, SN. Allosteric hotspots in the main protease of SARS-CoV-2. J Mol Biol 2022;434:167748. https://doi.org/10.1016/j.jmb.2022.167748 .
doi: 10.1016/j.jmb.2022.167748
Sultana, J, Crisafulli, S, Gabbay, F, Lynn, E, Shakir, S, Trifirò, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front Pharmacol 2020;11:1657. https://doi.org/10.3389/fphar.2020.588654 .
doi: 10.3389/fphar.2020.588654
Rane, JS, Pandey, P, Chatterjee, A, Khan, R, Kumar, A, Prakash, A, et al.. Targeting virus–host interaction by novel pyrimidine derivative: an in silico approach towards discovery of potential drug against COVID-19. J Biomol Struct Dyn 2021;39:5768–78. https://doi.org/10.1080/07391102.2020.1794969 .
doi: 10.1080/07391102.2020.1794969
Chaudhary, RG, Chouke, PB, Bagade, RD, Potbhare, AK, Dadure, KM. Molecular docking and antioxidant activity of Cleome simplicifolia assisted synthesis of cerium oxide nanoparticles. Mater Today Proc 2020;29:1085–90. https://doi.org/10.1016/j.matpr.2020.05.062 .
doi: 10.1016/j.matpr.2020.05.062
Chouke, PB, Potbhare, AK, Meshram, NP, Rai, MM, Dadure, KM, Chaudhary, K, et al.. Bioinspired NiO nanospheres: exploring in vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking, and proposed vacuolization mechanism. ACS Omega 2022;7:6869–84. https://doi.org/10.1021/acsomega.1c06544 .
doi: 10.1021/acsomega.1c06544
Potbhare, AK, Umekar, MS, Chouke, PB, Bagade, MB, Tarik Aziz, S, Abdala, AA, et al.. Bioinspired graphene-based silver nanoparticles: fabrication, characterization and antibacterial activity. Mater Today Proc 2020;29:720–5. https://doi.org/10.1016/j.matpr.2020.04.212 .
doi: 10.1016/j.matpr.2020.04.212
Burke, LA, Marks, KM. Drugs to treat viral hepatitis. In: Cohen, J, Powderly, WG, Opal, SM, editors. Infectious diseases . Elsevier; 2017, vol 2:1327–32.e1 pp.
Becke, AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 1988;38:3098–100. https://doi.org/10.1103/physreva.38.3098 .
doi: 10.1103/physreva.38.3098
Lee, C, Yang, W, Parr, RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988;37:785–9. https://doi.org/10.1103/physrevb.37.785 .
doi: 10.1103/physrevb.37.785
Chai, J-D, Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 2008;10:6615–20. https://doi.org/10.1039/b810189b .
doi: 10.1039/b810189b
Sharma, D, Srivastava, AK, Tiwari, SN. In-silico investigation of optical, thermal and electronic properties for 4-n-alkoxy benzoic acid series (nOBA; n = 1–8). J Mol Liq 2019;294:111672. https://doi.org/10.1016/j.molliq.2019.111672 .
doi: 10.1016/j.molliq.2019.111672
Tiwari, G, Sharma, D, Dwivedi, KK, Dwivedi, MK. Electronic structure of an anticancer drug DC81 and its interaction with DNA base pairs. AIP Conf Proc 2016;1728:020206.
Tiwari, A, Bansal, G, Mukhopadhyay, SJ, Bhattacharjee, A, Kanungo, S. Quantum capacitance engineering in boron and carbon modified monolayer phosphorene electrodes for supercapacitor application: a theoretical approach using ab-initio calculation. J Energy Storage 2023;73:109040. https://doi.org/10.1016/j.est.2023.109040 .
doi: 10.1016/j.est.2023.109040
Tiwari, A, Palepu, J, Choudhury, A, Bhattacharya, S, Kanungo, S. Theoretical analysis of the NH3, NO, and NO2 adsorption on boron-nitrogen and boron-phosphorous co-doped monolayer graphene – a comparative study. FlatChem 2022;34:100392. https://doi.org/10.1016/j.flatc.2022.100392 .
doi: 10.1016/j.flatc.2022.100392
Tiwari, A, Chauhan, MS, Sharma, D. Fluorination of 2,5-diphenyl-1,3,4-oxadiazole enhances the electron transport properties for OLED devices: a DFT analysis. Phase Transit 2022;95:888–900. https://doi.org/10.1080/01411594.2022.2129051 .
doi: 10.1080/01411594.2022.2129051
Frisch, MJ, Trucks, GW, Schlegel, HB, Scuseria, GE, Robb, MA, Cheeseman, JR, et al.. Gaussian 16, revision B.01 . Wallingford CT: Gaussian, Inc.; 2016.
Dennington, R, Keith, TA, Millam, JM. GaussView, version 6 . Shawnee Mission, KS: Semichem Inc.; 2016.
Tiwari, A, Apte, AA, Dyavadi, SK, Balaji, ESK, Bahadursha, N, Kanungo, S. Surface engineered phosphorene using boron and arsenic doping/Co-doping for Co-optimizing the adsorption stability, transduction, and recovery of CO, NO, and SO gases – a density functional theory perspective. Mater Today Commun 2023;36:106627. https://doi.org/10.1016/j.mtcomm.2023.106627 .
doi: 10.1016/j.mtcomm.2023.106627
Tiwari, A, Fernandes, RS, Dey, N, Kanungo, S. Site-specific ammonia adsorption and transduction on a naphthalimide derivative molecule – a complementary analysis involving ab initio calculation and experimental verification. Phys Chem Chem Phys 2023;25:17021–33. https://doi.org/10.1039/d3cp01373a .
doi: 10.1039/d3cp01373a
Kumar, S, Tiwari, G, Chauhan, MS, Sharma, D. First principles study of nonlinear optical, electronic properties and absorption spectra of some anti-HIV drugs: a comparative approach. Opt Quant Electron 2023;55:1236. https://doi.org/10.1007/s11082-023-05497-y .
doi: 10.1007/s11082-023-05497-y
Tiwari, G, Kumar, S, Chauhan, MS, Sharma, D. Ab-initio, molecular docking and md simulation of an anti-hiv drug(lamivudine): an in-silico approach. Biomed Mater Devices 2023. https://doi.org/10.1007/s44174-023-00131-7 .
doi: 10.1007/s44174-023-00131-7
Grosdidier, A, Zoete, V, Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 2011;39:W270–7. https://doi.org/10.1093/nar/gkr366 .
doi: 10.1093/nar/gkr366
Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC, et al.. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12. https://doi.org/10.1002/jcc.20084 .
doi: 10.1002/jcc.20084
Phillips, JC, Hardy, DJ, Maia, JDC, Stone, JE, Ribeiro, JV, Bernardi, RC, et al.. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 2020;153:044130. https://doi.org/10.1063/5.0014475 .
doi: 10.1063/5.0014475
Vanommeslaeghe, K, Hatcher, E, Acharya, C, Kundu, S, Zhong, S, Shim, J, et al.. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010;31:671–90. https://doi.org/10.1002/jcc.21367 .
doi: 10.1002/jcc.21367
Humphrey, W, Dalke, A, Schulten, K. VMD: visual molecular dynamics. J Mol Graph 1996;14:33–8. https://doi.org/10.1016/0263-7855(96)00018-5 .
doi: 10.1016/0263-7855(96)00018-5
Wang, E, Fu, W, Jiang, D, Sun, H, Wang, J, Zhang, X, et al.. VAD-MM/GBSA: a variable atomic dielectric MM/GBSA model for improved accuracy in protein-ligand binding free energy calculations. J Chem Inf Model 2021;61:2844–56. https://doi.org/10.1021/acs.jcim.1c00091 .
doi: 10.1021/acs.jcim.1c00091
Forrest, J, Bazylewski, P, Bauer, R, Hong, S, Kim, CY, Giesy, JP, et al.. A comprehensive model for chemical bioavailability and toxicity of organic chemicals based on first principles. Front Mar Sci 2014;1:31. https://doi.org/10.3389/fmars.2014.00031 .
doi: 10.3389/fmars.2014.00031
Kaschula, CH, Egan, TJ, Hunter, R, Basilico, N, Parapini, S, Taramelli, D, et al.. Structure – activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. J Med Chem 2002;45:3531–9. https://doi.org/10.1021/jm020858u .
doi: 10.1021/jm020858u
Tiwari, G, Kumar, A, Dwivedi, KK, Sharma, D. In silico investigation of electronic structure, binding patterns and molecular docking of nevirapine: an anti-HIV type-1 drug. Polycycl Aromat Comp 2022;42:2789–804. https://doi.org/10.1080/10406638.2020.1852268 .
doi: 10.1080/10406638.2020.1852268
Tiwari, G, Chauhan, MS, Sharma, D. Systematic in silico studies of corticosteroids and its binding affinities with glucocorticoid receptor for covid-19 treatment: ab-initio, molecular docking and MD simulation studies. Polycycl Aromat Comp 2023;43:4654–69. https://doi.org/10.1080/10406638.2022.2092878 .
doi: 10.1080/10406638.2022.2092878
Kowalska, J, Rok, J, Rzepka, Z, Wrześniok, D. Drug-induced photosensitivity – from light and chemistry to biological reactions and clinical symptoms. Pharmaceuticals 2021;14:723. https://doi.org/10.3390/ph14080723 .
doi: 10.3390/ph14080723
Gould, JW, Mercurio, MG, Elmets, CA. Cutaneous photosensitivity diseases induced by exogenous agents. J Am Acad Dermatol 1995;33:551–73. https://doi.org/10.1016/0190-9622(95)91271-1 .
doi: 10.1016/0190-9622(95)91271-1
Reddy, PG, Kumar, VK, Raju, VA, Ram, JR, Rraju, NA. Novel spectrophotometric method development for the estimation of boceprevir in bulk and in pharmaceutical formulations. Res J Pharm Technol 2017;10:4313. https://doi.org/10.5958/0974-360x.2017.00789.2 .
doi: 10.5958/0974-360x.2017.00789.2
Laskowski, RA, et al.. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283–91. https://doi.org/10.1107/S0021889892009944 .
doi: 10.1107/S0021889892009944
Yadav, R, Imran, M, Dhamija, P, Chaurasia, DK, Handu, S. Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. J Biomol Struct Dyn 2020;39:6617–32. https://doi.org/10.1080/07391102.2020.1796812 .
doi: 10.1080/07391102.2020.1796812
McConkey, B, Sobolev, V, Edelman, M. The performance of current methods in ligand-protein docking. Curr Sci 2002;83:845–55.
Tiwari, G, Chauhan, MS, Sharma, D. Estimation of binding sites of efavirenz with 3EO9 receptor: in silico molecular docking and molecular dynamics studies. Polycycl Aromat Comp 2022;42:7256–66. https://doi.org/10.1080/10406638.2021.1998148 .
doi: 10.1080/10406638.2021.1998148
Thakral, S, Narang, R, Kumar, M, Singh, V. Synthesis, molecular docking and molecular dynamic simulation studies of 2-chloro-5-[(4-chlorophenyl)sulfamoyl]-N-(alkyl/aryl)-4-nitrobenzamide derivatives as antidiabetic agents. BMC Chem 2020;14:49. https://doi.org/10.1186/s13065-020-00703-4 .
doi: 10.1186/s13065-020-00703-4
Mena-Ulecia, K, Tiznado, W, Caballero, J. Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM-GBSA. PLoS One 2015;10:e0142774. https://doi.org/10.1371/journal.pone.0142774 .
doi: 10.1371/journal.pone.0142774
Gilis, D, Rooman, M. Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials. J Mol Biol 1996;257:1112–26. https://doi.org/10.1006/jmbi.1996.0226 .
doi: 10.1006/jmbi.1996.0226

Auteurs

Gargi Tiwari (G)

Department of Physics, Patna University, Patna-800005, India.

Madan Singh Chauhan (MS)

Department of Physics, DDU Gorakhpur University, Gorakhpur-273009, India.

Dipendra Sharma (D)

Department of Physics, DDU Gorakhpur University, Gorakhpur-273009, India.

Classifications MeSH