Pulling the trigger: Noncoding RNAs in white adipose tissue browning.
Browning
Obesity
circRNAs
lncRNAs
miRNAs
ncRNAs
Journal
Reviews in endocrine & metabolic disorders
ISSN: 1573-2606
Titre abrégé: Rev Endocr Metab Disord
Pays: Germany
ID NLM: 100940588
Informations de publication
Date de publication:
Apr 2024
Apr 2024
Historique:
accepted:
11
12
2023
medline:
18
3
2024
pubmed:
2
1
2024
entrez:
29
12
2023
Statut:
ppublish
Résumé
White adipose tissue (WAT) serves as the primary site for energy storage and endocrine regulation in mammals, while brown adipose tissue (BAT) is specialized for thermogenesis and energy expenditure. The conversion of white adipocytes to brown-like fat cells, known as browning, has emerged as a promising therapeutic strategy for reversing obesity and its associated co-morbidities. Noncoding RNAs (ncRNAs) are a class of transcripts that do not encode proteins but exert regulatory functions on gene expression at various levels. Recent studies have shed light on the involvement of ncRNAs in adipose tissue development, differentiation, and function. In this review, we aim to summarize the current understanding of ncRNAs in adipose biology, with a focus on their role and intricate mechanisms in WAT browning. Also, we discuss the potential applications and challenges of ncRNA-based therapies for overweight and its metabolic disorders, so as to combat the obesity epidemic in the future.
Identifiants
pubmed: 38157150
doi: 10.1007/s11154-023-09866-6
pii: 10.1007/s11154-023-09866-6
doi:
Substances chimiques
RNA, Untranslated
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
399-420Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, Mozaffarian D, Swinburn B, Ezzati M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):231–40. https://doi.org/10.1016/S2213-8587(19)30026-9 .
doi: 10.1016/S2213-8587(19)30026-9
pubmed: 30704950
pmcid: 7360432
Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242–58. https://doi.org/10.1038/s41580-018-0093-z .
doi: 10.1038/s41580-018-0093-z
pubmed: 30610207
Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL. The global obesity pandemic: Shaped by global drivers and local environments. Lancet. 2011;378(9793):804–14. https://doi.org/10.1016/S0140-6736(11)60813-1 .
doi: 10.1016/S0140-6736(11)60813-1
pubmed: 21872749
Whitehead A, Krause FN, Moran A, MacCannell ADV, Scragg JL, McNally BD, Boateng E, Murfitt SA, Virtue S, Wright J, et al. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat Commun. 2021;12(1):1905. https://doi.org/10.1038/s41467-021-22272-3 .
doi: 10.1038/s41467-021-22272-3
pubmed: 33772024
pmcid: 7998027
Kurylowicz A, Puzianowska-Kuznicka M. Induction of adipose tissue browning as a strategy to combat obesity. Int J Mol Sci. 2020;21(17):6241. https://doi.org/10.3390/ijms21176241 .
doi: 10.3390/ijms21176241
pubmed: 32872317
pmcid: 7504355
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94. https://doi.org/10.1016/j.cell.2014.03.008 .
doi: 10.1016/j.cell.2014.03.008
pubmed: 24679528
Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. https://doi.org/10.1038/nature05874 .
doi: 10.1038/nature05874
Squillaro T, Peluso G, Galderisi U, Di Bernardo G. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. Elife. 2020;9:e59053. https://doi.org/10.7554/eLife.59053 .
doi: 10.7554/eLife.59053
pubmed: 32730204
pmcid: 7392603
Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W. Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep. 2016;6:28897. https://doi.org/10.1038/srep28897 .
doi: 10.1038/srep28897
pubmed: 27349231
pmcid: 4924093
Long J-K, Dai W, Zheng Y-W, Zhao S-P. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med. 2019;25(1):26. https://doi.org/10.1186/s10020-019-0085-2 .
doi: 10.1186/s10020-019-0085-2
pubmed: 31195981
pmcid: 6567918
Xu G, Li M, Wu J, Qin C, Tao Y, He H. Circular RNA circNRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 2020;12:2789–802. https://doi.org/10.2147/CMAR.S246272 .
doi: 10.2147/CMAR.S246272
pubmed: 32425596
pmcid: 7186590
Osuna-Prieto FJ, Martinez-Tellez B, Segura-Carretero A, Ruiz JR. Activation of brown adipose tissue and promotion of white adipose tissue browning by plant-based dietary components in rodents: A systematic review. Adv Nutr. 2021;12:2147–56. https://doi.org/10.1093/advances/nmab084 .
doi: 10.1093/advances/nmab084
pubmed: 34265040
pmcid: 8634450
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507–24. https://doi.org/10.1038/s41574-019-0230-6 .
doi: 10.1038/s41574-019-0230-6
pubmed: 31296970
Auger C, Kajimura S. Adipose tissue remodeling in pathophysiology. Annu Rev Pathol. 2023;18:71–93. https://doi.org/10.1146/annurev-pathol-042220-023633 .
doi: 10.1146/annurev-pathol-042220-023633
pubmed: 36070562
Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10:24–36. https://doi.org/10.1038/nrendo.2013.204 .
doi: 10.1038/nrendo.2013.204
pubmed: 24146030
Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature. 2013;495:379–83. https://doi.org/10.1038/nature11943 .
doi: 10.1038/nature11943
pubmed: 23485971
pmcid: 3623555
Rui L. Brown and beige adipose tissues in health and disease. Compr Physiol. 2017;7:1281–306. https://doi.org/10.1002/cphy.c170001 .
doi: 10.1002/cphy.c170001
pubmed: 28915325
pmcid: 6192523
Chen Y, Wu Z, Huang S, Wang X, He S, Liu L, Hu Y, Chen L, Chen P, Liu S, et al. Adipocyte IRE1alpha promotes PGC1alpha mRNA decay and restrains adaptive thermogenesis. Nat Metab. 2022;4:1166–84. https://doi.org/10.1038/s42255-022-00631-8 .
doi: 10.1038/s42255-022-00631-8
pubmed: 36123394
Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P, et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med. 2017;23:1454–65. https://doi.org/10.1038/nm.4429 .
doi: 10.1038/nm.4429
pubmed: 29131158
pmcid: 5727902
Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993;366:740–2. https://doi.org/10.1038/366740a0 .
doi: 10.1038/366740a0
pubmed: 8264795
Sidossis L, Kajimura S. Brown and beige fat in humans: Thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125:478–86. https://doi.org/10.1172/JCI78362 .
doi: 10.1172/JCI78362
pubmed: 25642708
pmcid: 4319444
Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring). 2011;19:1755–60. https://doi.org/10.1038/oby.2011.125 .
doi: 10.1038/oby.2011.125
pubmed: 21566561
Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol (Lausanne). 2019;10:137. https://doi.org/10.3389/fendo.2019.00137 .
doi: 10.3389/fendo.2019.00137
pubmed: 30915034
Rogers NH. Brown adipose tissue during puberty and with aging. Ann Med. 2015;47:142–9. https://doi.org/10.3109/07853890.2014.914807 .
doi: 10.3109/07853890.2014.914807
pubmed: 24888388
Li Y, Wang D, Ping X, Zhang Y, Zhang T, Wang L, Jin L, Zhao W, Guo M, Shen F, et al. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell. 2022;185(949–966):e919. https://doi.org/10.1016/j.cell.2022.02.004 .
doi: 10.1016/j.cell.2022.02.004
Wang L, Liu X, Liu S, Niu Y, Fu L. Sestrin2 ablation attenuates the exercise-induced browning of white adipose tissue in C57BL/6J mice. Acta Physiol (Oxf). 2022;234:e13785. https://doi.org/10.1111/apha.13785 .
doi: 10.1111/apha.13785
pubmed: 34995401
Song Y, Zan W, Qin L, Han S, Ye L, Wang M, Jiang B, Fang P, Liu Q, Shao C. Ablation of ORMDL3 impairs adipose tissue thermogenesis and insulin sensitivity by increasing ceramide generation. Mol Metabol. 2022;56:101423. https://doi.org/10.1016/j.molmet.2021.101423 .
doi: 10.1016/j.molmet.2021.101423
Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the biology of thermogenic fat: Is browning a new approach to the treatment of obesity? Arch Med Res. 2017;48:401–13. https://doi.org/10.1016/j.arcmed.2017.10.002 .
doi: 10.1016/j.arcmed.2017.10.002
pubmed: 29102386
Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: Physiological roles beyond heat generation. Cell Metab. 2015;22:546–59. https://doi.org/10.1016/j.cmet.2015.09.007 .
doi: 10.1016/j.cmet.2015.09.007
pubmed: 26445512
pmcid: 4613812
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5. https://doi.org/10.1038/nm.2297 .
doi: 10.1038/nm.2297
pubmed: 21258337
Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab. 2010;11:257–62. https://doi.org/10.1016/j.cmet.2010.03.005 .
doi: 10.1016/j.cmet.2010.03.005
pubmed: 20374957
pmcid: 2857670
Stanford KI, Middelbeek RJ, Goodyear LJ. Erratum. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes. 2015;64:2361–2368. Diabetes 64:3334. https://doi.org/10.2337/db15-er09 .
Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, Lv Y, Li H, Wang C, Ma Q, et al. Brown and beige adipose tissue: A novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10:48–65. https://doi.org/10.1080/21623945.2020.1870060 .
doi: 10.1080/21623945.2020.1870060
pubmed: 33403891
pmcid: 7801117
Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res. 2014;55:2276–86. https://doi.org/10.1194/jlr.M050005 .
doi: 10.1194/jlr.M050005
pubmed: 25193997
pmcid: 4617130
Desjardins EM, Steinberg GR. Emerging role of AMPK in brown and Beige Adipose Tissue (BAT): Implications for obesity, insulin resistance, and type 2 diabetes. Curr Diab Rep. 2018;18:80. https://doi.org/10.1007/s11892-018-1049-6 .
doi: 10.1007/s11892-018-1049-6
pubmed: 30120579
Cuevas-Ramos D, Mehta R, Aguilar-Salinas CA. Fibroblast growth factor 21 and browning of white adipose tissue. Front Physiol. 2019;10:37. https://doi.org/10.3389/fphys.2019.00037 .
doi: 10.3389/fphys.2019.00037
pubmed: 30804796
pmcid: 6370737
Pydi SP, Jain S, Barella LF, Zhu L, Sakamoto W, Meister J, Wang L, Lu H, Cui Y, Gavrilova O, et al. Beta-arrestin-1 suppresses myogenic reprogramming of brown fat to maintain euglycemia. Sci Adv. 2020;6:eaba1733. https://doi.org/10.1126/sciadv.aba1733 .
doi: 10.1126/sciadv.aba1733
pubmed: 32548266
pmcid: 7274797
Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13:26–35. https://doi.org/10.1038/nrendo.2016.136 .
doi: 10.1038/nrendo.2016.136
pubmed: 27616452
Shi L, Li Y, Xu X, Cheng Y, Meng B, Xu J, Xiang L, Zhang J, He K, Tong J, et al. Brown adipose tissue-derived Nrg4 alleviates endothelial inflammation and atherosclerosis in male mice. Nat Metab. 2022;4:1573–90. https://doi.org/10.1038/s42255-022-00671-0 .
doi: 10.1038/s42255-022-00671-0
pubmed: 36400933
pmcid: 9684073
Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM, Nilsson SK, Brenner MB, Heeren J, Scheja L. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 2016;23:441–53. https://doi.org/10.1016/j.cmet.2016.01.006 .
doi: 10.1016/j.cmet.2016.01.006
pubmed: 26853749
Gunawardana SC, Piston DW. Insulin-independent reversal of type-1 diabetes following transplantation of adult brown adipose tissue supplemented with IGF-1. Transplant Direct. 2019;5:e500. https://doi.org/10.1097/TXD.0000000000000945 .
doi: 10.1097/TXD.0000000000000945
pubmed: 31773053
pmcid: 6831116
Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157:1292–308. https://doi.org/10.1016/j.cell.2014.03.066 .
doi: 10.1016/j.cell.2014.03.066
pubmed: 24906148
pmcid: 4129510
Tang Y, Ma D, Liang M, Hou Y, Zhang M, Wang J, Yuan C, Li M, Sun C, Xie J, et al. Stress-inducible IL-6 is regulated by KLF7 in brown adipocytes. Heliyon. 2023;9:e14931. https://doi.org/10.1016/j.heliyon.2023.e14931 .
doi: 10.1016/j.heliyon.2023.e14931
pubmed: 37025783
pmcid: 10070148
Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123:215–23. https://doi.org/10.1172/JCI62308 .
doi: 10.1172/JCI62308
pubmed: 23221344
Cinti S. The adipose organ at a glance. Dis Model Mech. 2012;5:588–94. https://doi.org/10.1242/dmm.009662 .
doi: 10.1242/dmm.009662
pubmed: 22915020
pmcid: 3424455
Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. 2012;7:e49452. https://doi.org/10.1371/journal.pone.0049452 .
doi: 10.1371/journal.pone.0049452
pubmed: 23166672
pmcid: 3500293
Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis. 2023;10:2393–413. https://doi.org/10.1016/j.gendis.2022.05.022 .
doi: 10.1016/j.gendis.2022.05.022
pubmed: 37554181
Liu N, Pan T. RNA epigenetics. Transl Res. 2015;165:28–35. https://doi.org/10.1016/j.trsl.2014.04.003 .
doi: 10.1016/j.trsl.2014.04.003
pubmed: 24768686
Rong D, Sun G, Wu F, Cheng Y, Sun G, Jiang W, Li X, Zhong Y, Wu L, Zhang C, et al. Epigenetics: Roles and therapeutic implications of non-coding RNA modifications in human cancers. Mol Ther Nucleic Acids. 2021;25:67–82. https://doi.org/10.1016/j.omtn.2021.04.021 .
doi: 10.1016/j.omtn.2021.04.021
pubmed: 34188972
pmcid: 8217334
Yan Y, Peng J, Liang Q, Ren X, Cai Y, Peng B, Chen X, Wang X, Yi Q, Xu Z. Dynamic m6A-ncRNAs association and their impact on cancer pathogenesis, immune regulation and therapeutic response. Genes Dis. 2023;10:135–50. https://doi.org/10.1016/j.gendis.2021.10.004 .
doi: 10.1016/j.gendis.2021.10.004
pubmed: 37013031
Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519:482–5. https://doi.org/10.1038/nature14281 .
doi: 10.1038/nature14281
pubmed: 25799998
pmcid: 4475635
Song H, Zhang J, Liu B, Xu J, Cai B, Yang H, Straube J, Yu X, Ma T. Biological roles of RNA m(5)C modification and its implications in cancer immunotherapy. Biomark Res. 2022;10:15. https://doi.org/10.1186/s40364-022-00362-8 .
doi: 10.1186/s40364-022-00362-8
pubmed: 35365216
pmcid: 8973801
Cusenza VY, Tameni A, Neri A, Frazzi R. The lncRNA epigenetics: The significance of m6A and m5C lncRNA modifications in cancer. Front Oncol. 2023;13:1063636. https://doi.org/10.3389/fonc.2023.1063636 .
doi: 10.3389/fonc.2023.1063636
pubmed: 36969033
pmcid: 10033960
Xiao T, Liu L, Li H, Sun Y, Luo H, Li T, Wang S, Dalton S, Zhao RC, Chen R. Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBPalpha. Stem Cell Reports. 2021;16:1006–8. https://doi.org/10.1016/j.stemcr.2021.03.024 .
doi: 10.1016/j.stemcr.2021.03.024
pubmed: 33852881
pmcid: 8072130
Xu J, Zhang L, Shu G, Wang B. microRNA-16–5p promotes 3T3-L1 adipocyte differentiation through regulating EPT1. Biochem Biophys Res Commun. 2019;514:1251–6. https://doi.org/10.1016/j.bbrc.2019.04.179 .
doi: 10.1016/j.bbrc.2019.04.179
pubmed: 31109647
Zhang Y, Tian Z, Ye H, Sun X, Zhang H, Sun Y, Mao Y, Yang Z, Li M. Emerging functions of circular RNA in the regulation of adipocyte metabolism and obesity. Cell Death Discov. 2022;8:268. https://doi.org/10.1038/s41420-022-01062-w .
doi: 10.1038/s41420-022-01062-w
pubmed: 35595755
pmcid: 9122900
Sun L, Lin JD. Function and mechanism of long noncoding RNAs in adipocyte biology. Diabetes. 2019;68:887–96. https://doi.org/10.2337/dbi18-0009 .
doi: 10.2337/dbi18-0009
pubmed: 31010880
pmcid: 6477904
Statello L, Guo CJ, Chen LL, Huarte M. Author Correction: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:159. https://doi.org/10.1038/s41580-021-00330-4 .
doi: 10.1038/s41580-021-00330-4
pubmed: 33420484
pmcid: 8095262
Xiong Y, Yue F, Jia Z, Gao Y, Jin W, Hu K, Zhang Y, Zhu D, Yang G, Kuang S. A novel brown adipocyte-enriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids. 2018;1863(4):409–19. https://doi.org/10.1016/j.bbalip.2018.01.008 .
doi: 10.1016/j.bbalip.2018.01.008
Iwase M, Sakai S, Seno S, Yeh Y-S, Kuo T, Takahashi H, Nomura W, Jheng H-F, Horton P, Osato N. Long non-coding RNA 2310069B03Rik functions as a suppressor of Ucp1 expression under prolonged cold exposure in murine beige adipocytes. Biosci Biotechnol Biochem. 2020;84(2):305–13. https://doi.org/10.1080/09168451.2019.1677451 .
doi: 10.1080/09168451.2019.1677451
pubmed: 31601163
Giroud M, Kotschi S, Kwon Y, Le Thuc O, Hoffmann A, Gil-Lozano M, Karbiener M, Higareda-Almaraz JC, Khani S, Tews D. The obesity-linked human lncRNA AATBC stimulates mitochondrial function in adipocytes. EMBO Rep. 2023;24(10):e57600. https://doi.org/10.15252/embr.202357600 .
doi: 10.15252/embr.202357600
pubmed: 37671834
pmcid: 10561178
Huang R, Shi C, Liu G. Long noncoding RNA ACART knockdown decreases 3T3-L1 preadipocyte proliferation and differentiation. Open Life Sci. 2023;18(1):20220552. https://doi.org/10.1515/biol-2022-0552 .
doi: 10.1515/biol-2022-0552
pubmed: 36820208
pmcid: 9938541
Cai R, Sun Y, Qimuge N, Wang G, Wang Y, Chu G, Yu T, Yang G, Pang W. Adiponectin AS lncRNA inhibits adipogenesis by transferring from nucleus to cytoplasm and attenuating Adiponectin mRNA translation. Biochim Biophys Acta (BBA)-Mol Cell Biolo Lipids. 2018;1863(4):420–32. https://doi.org/10.1016/j.bbalip.2018.01.005 .
doi: 10.1016/j.bbalip.2018.01.005
Alvarez-Dominguez JR, Bai Z, Xu D, Yuan B, Lo KA, Yoon MJ, Lim YC, Knoll M, Slavov N, Chen S. De novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regulators of brown adipocyte development. Cell Metab. 2015;21(5):764–76. https://doi.org/10.1016/j.cmet.2015.04.003 .
doi: 10.1016/j.cmet.2015.04.003
pubmed: 25921091
pmcid: 4429916
Li S, Mi L, Yu L, Yu Q, Liu T, Wang G-X, Zhao X-Y, Wu J, Lin JD. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc Natl Acad Sci. 2017;114(34):E7111–20. https://doi.org/10.1073/pnas.1703494114 .
doi: 10.1073/pnas.1703494114
pubmed: 28784777
pmcid: 5576792
Mi L, Zhao X-Y, Li S, Yang G, Lin JD. Conserved function of the long noncoding RNA Blnc1 in brown adipocyte differentiation. Mol Metabol. 2017;6(1):101–10. https://doi.org/10.1016/j.molmet.2016.10.010 .
doi: 10.1016/j.molmet.2016.10.010
Shen L, Han J, Wang H, Meng Q, Chen L, Liu Y, Feng Y, Wu G. Cachexia-related long noncoding RNA, CAAlnc1, suppresses adipogenesis by blocking the binding of HuR to adipogenic transcription factor mRNAs. Int J Cancer. 2019;145(7):1809–21. https://doi.org/10.1002/ijc.32236 .
doi: 10.1002/ijc.32236
pubmed: 30807648
Bast-Habersbrunner A, Kiefer C, Weber P, Fromme T, Schießl A, Schwalie PC, Deplancke B, Li Y, Klingenspor M. LncRNA Ctcflos orchestrates transcription and alternative splicing in thermogenic adipogenesis. EMBO Rep. 2021;22(7):e51289. https://doi.org/10.15252/embr.202051289 .
doi: 10.15252/embr.202051289
pubmed: 34056831
pmcid: 8256291
Liu Y, Wang J, Shou Y, Xu W, Huang Z, Xu J, Chen K, Liu J, Liu D, Liang H. Restoring the epigenetically silenced lncRNA COL18A1-AS1 represses ccRCC progression by lipid browning via miR-1286/KLF12 axis. Cell Death Dis. 2022;13(7):578. https://doi.org/10.1038/s41419-022-04996-2 .
doi: 10.1038/s41419-022-04996-2
pubmed: 35787628
pmcid: 9253045
Chen Y-T, Yang Q-Y, Hu Y, Liu X-D, de Avila JM, Zhu M-J, Nathanielsz PW, Du M. Imprinted lncRNA Dio3os preprograms intergenerational brown fat development and obesity resistance. Nat Commun. 2021;12(1):6845. https://doi.org/10.1038/s41467-021-27171-1 .
doi: 10.1038/s41467-021-27171-1
pubmed: 34824246
pmcid: 8617289
Wang Y, Hua S, Cui X, Cao Y, Wen J, Chi X, Ji C, Pang L, You L. The effect of FOXC2-AS1 on white adipocyte browning and the possible regulatory mechanism. Front Endocrinol (Lausanne). 2020;11:565483. https://doi.org/10.3389/fendo.2020.565483 .
doi: 10.3389/fendo.2020.565483
pubmed: 33193083
pmcid: 7658007
You L, Zhou Y, Cui X, Wang X, Sun Y, Gao Y, Wang X, Wen J, Xie K, Tang R. GM13133 is a negative regulator in mouse white adipocytes differentiation and drives the characteristics of brown adipocytes. J Cell Physiol. 2018;233(1):313–24. https://doi.org/10.1002/jcp.25878 .
doi: 10.1002/jcp.25878
pubmed: 28247947
Liu W, Ma C, Yang B, Yin C, Zhang B, Xiao Y. LncRNA Gm15290 sponges miR-27b to promote PPARγ-induced fat deposition and contribute to body weight gain in mice. Biochem Biophys Res Commun. 2017;493(3):1168–75. https://doi.org/10.1016/j.bbrc.2017.09.114 .
doi: 10.1016/j.bbrc.2017.09.114
pubmed: 28943435
Schmidt E, Dhaouadi I, Gaziano I, Oliverio M, Klemm P, Awazawa M, Mitterer G, Fernandez-Rebollo E, Pradas-Juni M, Wagner W. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat Commun. 2018;9(1):3622. https://doi.org/10.1038/s41467-018-05933-8 .
doi: 10.1038/s41467-018-05933-8
pubmed: 30190464
pmcid: 6127097
Guo Y-F, Sun J-Y, Liu Y, Liu Z-Y, Huang Y, Xiao Y, Su T. LncRNA Hnscr regulates lipid metabolism by mediating adipocyte lipolysis. Endocrinology. 2023;164(2):bqad147. https://doi.org/10.1210/endocr/bqad147 .
doi: 10.1210/endocr/bqad147
pubmed: 37788569
pmcid: 10628467
Zhang Z, Cui Y, Su V, Wang D, Tol MJ, Cheng L, Wu X, Kim J, Rajbhandari P, Zhang S. A PPAR γ/long noncoding RNA axis regulates adipose thermoneutral remodeling in mice. J Clin Investig. 2023;133(21):e170072. https://doi.org/10.1172/JCI170072 .
doi: 10.1172/JCI170072
pubmed: 37909330
pmcid: 10617768
Tran K-V, Brown EL, DeSouza T, Jespersen NZ, Nandrup-Bus C, Yang Q, Yang Z, Desai A, Min SY, Rojas-Rodriguez R. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat Metab. 2020;2(5):397–412. https://doi.org/10.1038/s42255-020-0205-x .
doi: 10.1038/s42255-020-0205-x
pubmed: 32440655
pmcid: 7241442
Bai Z, Chai X-R, Yoon MJ, Kim H-J, Lo KA, Zhang Z-C, Xu D, Siang DTC, Walet ACE, Xu S-H. Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biol. 2017;15(8):e2002176. https://doi.org/10.1371/journal.pbio.2002176 .
doi: 10.1371/journal.pbio.2002176
pubmed: 28763438
pmcid: 5538645
Liu X, Huang C, Jiang T, Sun X, Zhan S, Zhong T, Guo J, Dai D, Wang Y, Li L. LncDGAT2 is a novel positive regulator of the goat adipocyte thermogenic gene program. Int J Biol Macromol. 2023;245:125465. https://doi.org/10.1016/j.ijbiomac.2023.125465 .
doi: 10.1016/j.ijbiomac.2023.125465
pubmed: 37355065
Ma J, Wu Y, Cen L, Wang Z, Jiang K, Lian B, Sun C. Cold‐inducible lncRNA266 promotes browning and the thermogenic program in white adipose tissue. EMBO Rep. 2023;e55467. https://doi.org/10.15252/embr.202255467 .
Huang Y, Jin C, Zheng Y, Li X, Zhang S, Zhang Y, Jia L, Li W. Knockdown of lncRNA MIR31HG inhibits adipocyte differentiation of human adipose-derived stem cells via histone modification of FABP4. Sci Rep. 2017;7(1):8080. https://doi.org/10.1038/s41598-017-08131-6 .
doi: 10.1038/s41598-017-08131-6
pubmed: 28808264
pmcid: 5556051
Tang T, Jiang G, Shao J, Wang M, Zhang X, Xia S, Sun W, Jia X, Wang J, Lai S. lncRNA MSTRG4710 promotes the proliferation and differentiation of preadipocytes through miR-29b-3p/IGF1 Axis. Int J Mol Sci. 2023;24(21):15715. https://doi.org/10.3390/ijms242115715 .
doi: 10.3390/ijms242115715
pubmed: 37958699
pmcid: 10649235
Tang J, Liu X, Su D, Jiang T, Zhan S, Zhong T, Guo J, Cao J, Li L, Zhang H. A Novel LncRNA MSTRG. 310246.1 Promotes differentiation and thermogenesis in goat brown adipocytes. Genes. 2023;14(4):833. https://doi.org/10.3390/genes14040833 .
Zhang Y, Ma Y, Gu M, Peng Y. lncRNA TUG1 promotes the brown remodeling of white adipose tissue by regulating miR-204-targeted SIRT1 in diabetic mice. Int J Mol Med. 2020;46(6):2225–34. https://doi.org/10.3892/ijmm.2020.4741 .
doi: 10.3892/ijmm.2020.4741
pubmed: 33125086
Cui X, You L, Li Y, Zhu L, Zhang F, Xie K, Cao Y, Ji C, Guo X. A transcribed ultraconserved noncoding RNA, uc. 417, serves as a negative regulator of brown adipose tissue thermogenesis. FASEB J. 2016;30(12):4301–12. https://doi.org/10.1096/fj.201600694R .
doi: 10.1096/fj.201600694R
pubmed: 27655899
Wu C, Fang S, Zhang H, Li X, Du Y, Zhang Y, Lin X, Wang L, Ma X, Xue Y. Long noncoding RNA XIST regulates brown preadipocytes differentiation and combats high-fat diet induced obesity by targeting C/EBPα. Mol Med. 2022;28(1):6. https://doi.org/10.1186/s10020-022-00434-3 .
doi: 10.1186/s10020-022-00434-3
pubmed: 35062859
pmcid: 8781062
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62. https://doi.org/10.1038/nrg.2015.10 .
doi: 10.1038/nrg.2015.10
pubmed: 26666209
Zhang P, Wu S, He Y, Li X, Zhu Y, Lin X, Chen L, Zhao Y, Niu L, Zhang S, et al. LncRNA-mediated adipogenesis in different adipocytes. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23137488 .
Zhao X-Y, Li S, DelProposto JL, Liu T, Mi L, Porsche C, Peng X, Lumeng CN, Lin JD. The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health. Molecular metabolism. 2018;14:60–70. https://doi.org/10.1016/j.molmet.2018.06.005 .
doi: 10.1016/j.molmet.2018.06.005
pubmed: 29934059
pmcid: 6034069
Zhao XY, Li S, Wang GX, Yu Q, Lin JD. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol Cell. 2014;55:372–82. https://doi.org/10.1016/j.molcel.2014.06.004 .
doi: 10.1016/j.molcel.2014.06.004
pubmed: 25002143
pmcid: 4127104
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/s0092-8674(04)00045-5 .
doi: 10.1016/s0092-8674(04)00045-5
pubmed: 14744438
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24. https://doi.org/10.1038/nrm3838 .
doi: 10.1038/nrm3838
pubmed: 25027649
Ru W, Zhang S, Liu J, Liu W, Huang B, Chen H. Non-coding RNAs and adipogenesis. Int J Mol Sci. 2023;24(12):9978. https://doi.org/10.3390/ijms24129978 .
doi: 10.3390/ijms24129978
pubmed: 37373126
pmcid: 10298535
Trajkovski M, Ahmed K, Esau CC, Stoffel M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol. 2012;14(12):1330–5. https://doi.org/10.1038/ncb2612 .
doi: 10.1038/ncb2612
pubmed: 23143398
Zhao J, Hu L, Gui W, Xiao L, Wang W, Xia J, Fan H, Li Z, Zhu Q, Hou X. Hepatocyte TGF-β signaling inhibiting WAT browning to promote NAFLD and obesity is associated with Let-7b-5p. Hepatol Commun. 2022;6(6):1301–21. https://doi.org/10.1002/hep4.1892 .
doi: 10.1002/hep4.1892
pubmed: 35018737
pmcid: 9134819
Giroud M, Karbiener M, Pisani DF, Ghandour RA, Beranger GE, Niemi T, Taittonen M, Nuutila P, Virtanen KA, Langin D. Let-7i-5p represses brite adipocyte function in mice and humans. Sci Rep. 2016;6:28613. https://doi.org/10.1038/srep28613 .
doi: 10.1038/srep28613
pubmed: 27345691
pmcid: 4921928
Cho YK, Son Y, Kim S-N, Song H-D, Kim M, Park J-H, Jung Y-S, Ahn S-Y, Saha A, Granneman JG. MicroRNA-10a-5p regulates macrophage polarization and promotes therapeutic adipose tissue remodeling. Mol Metabol. 2019;29:86–98. https://doi.org/10.1016/j.molmet.2019.08.015 .
doi: 10.1016/j.molmet.2019.08.015
Giroud M, Pisani DF, Karbiener M, Barquissau V, Ghandour RA, Tews D, Fischer-Posovszky P, Chambard J-C, Knippschild U, Niemi T. miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function. Mole Metabol. 2016;5(8):615–25. https://doi.org/10.1016/j.molmet.2016.06.005 .
doi: 10.1016/j.molmet.2016.06.005
Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol Cell Biol. 2011;31(4):626–38. https://doi.org/10.1128/MCB.00894-10 .
doi: 10.1128/MCB.00894-10
pubmed: 21135128
Luo W, Kim Y, Jensen ME, Herlea-Pana O, Wang W, Rudolph MC, Friedman JE, Chernausek SD, Jiang S. miR-130b/301b is a negative regulator of beige adipogenesis and energy metabolism in vitro and in vivo. Diabetes. 2022;71(11):2360–71. https://doi.org/10.2337/db22-0205 .
doi: 10.2337/db22-0205
pubmed: 36001751
pmcid: 9630090
Liang J, Jia Y, Yu H, Yan H, Shen Q, Xu Y, Li Y, Yang M. 5-Aza-2′-deoxycytidine regulates white adipocyte browning by modulating miRNA-133a/Prdm16. Metabolites. 2022;12(11):1131. https://doi.org/10.3390/metabo12111131 .
doi: 10.3390/metabo12111131
pubmed: 36422269
pmcid: 9695087
Liu J, Liu J, Zeng D, Wang H, Wang Y, Xiong J, Chen X, Luo J, Chen T, Xi Q. miR-143-null is against diet-induced obesity by promoting BAT thermogenesis and inhibiting WAT adipogenesis. Int J Mol Sci. 2022;23(21):13058. https://doi.org/10.3390/ijms232113058 .
doi: 10.3390/ijms232113058
pubmed: 36361843
pmcid: 9658130
Liu J, Wei L, Chen T, Wang H, Luo J, Chen X, Jiang Q, Xi Q, Sun J, Zhang L, et al. MiR-143 targets SYK to regulate NEFA uptake and contribute to thermogenesis in male mice. Endocrinology. 2023;164(9):bqad114. https://doi.org/10.1210/endocr/bqad114 .
doi: 10.1210/endocr/bqad114
pubmed: 37486737
Di W, Zhang W, Zhu B, Li X, Tang Q, Zhou Y. Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p. J Cell Physiol. 2021;236(7):5399–410. https://doi.org/10.1002/jcp.30245 .
doi: 10.1002/jcp.30245
pubmed: 33368224
Pan X-X, Cao J-M, Cai F, Ruan C-C, Wu F, Gao P-J. Loss of miR-146b-3p inhibits perivascular adipocyte browning with cold exposure during aging. Cardiovasc Drugs Ther. 2018;32(5):511–8. https://doi.org/10.1007/s10557-018-6814-x .
doi: 10.1007/s10557-018-6814-x
pubmed: 30073586
Ding H, Zheng S, Garcia-Ruiz D, Hou D, Wei Z, Liao Z, Li L, Zhang Y, Han X, Zen K. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nat Commun. 2016;7:11533. https://doi.org/10.1038/ncomms11533 .
doi: 10.1038/ncomms11533
pubmed: 27240637
pmcid: 4895052
Chou C-F, Lin Y-Y, Wang H-K, Zhu X, Giovarelli M, Briata P, Gherzi R, Garvey WT, Chen C-Y. KSRP ablation enhances brown fat gene program in white adipose tissue through reduced miR-150 expression. Diabetes. 2014;63(9):2949–61. https://doi.org/10.2337/db13-1901 .
doi: 10.2337/db13-1901
pubmed: 24722250
pmcid: 4141372
Chen Y, Siegel F, Kipschull S, Haas B, Fröhlich H, Meister G, Pfeifer A. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun. 2013;4:1769. https://doi.org/10.1038/ncomms274 .
doi: 10.1038/ncomms274
pubmed: 23612310
Huang Y, Zhang H, Dong M, Zhang L, Lin J, Ye R, Zhou H, Liu X, Jin W. miR17–92 cluster drives white adipose tissue browning. J Mol Endocrinol. 2020;65(3):97–107. https://doi.org/10.1530/JME-20-0032 .
doi: 10.1530/JME-20-0032
pubmed: 32755999
Huang Y, Xiao Y, Liu Y, Guo M, Guo Q, Zhou F, Liu T, Su T, Xiao Y, Luo XH. MicroRNA-188 regulates aging-associated metabolic phenotype. Aging Cell. 2020;19(1):e13077. https://doi.org/10.1111/acel.13077 .
doi: 10.1111/acel.13077
pubmed: 31762181
Lv Y-F, Yu J, Sheng Y-L, Huang M, Kong X-C, Di W-J, Liu J, Zhou H, Liang H. Ding G-X Glucocorticoids suppress the browning of adipose tissue via miR-19b in male mice. Endocrinology. 2018;159(1):310–22. https://doi.org/10.1210/en.2017-00566 .
doi: 10.1210/en.2017-00566
pubmed: 29077919
Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 2012;10(4):e1001314. https://doi.org/10.1371/journal.pbio.1001314 .
doi: 10.1371/journal.pbio.1001314
pubmed: 22545021
pmcid: 3335871
Di W, Amdanee N, Zhang W, Zhou Y. Long-term exercise-secreted extracellular vesicles promote browning of white adipocytes by suppressing miR-191a-5p. Life Sci. 2020;263:118464. https://doi.org/10.1016/j.lfs.2020.118464 .
doi: 10.1016/j.lfs.2020.118464
pubmed: 32956666
Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM, Liu Q, Kahn CR, Lodish HF. Mir193b–365 is essential for brown fat differentiation. Nat Cell Biol. 2011;13(8):958–65. https://doi.org/10.1038/ncb2286 .
doi: 10.1038/ncb2286
pubmed: 21743466
pmcid: 3149720
He L, Tang M, Xiao T, Liu H, Liu W, Li G, Zhang F, Xiao Y, Zhou Z, Liu F. Obesity-associated miR-199a/214 cluster inhibits adipose browning via PRDM16–PGC-1α transcriptional network. Diabetes. 2018;67(12):2585–600. https://doi.org/10.2337/db18-0626 .
doi: 10.2337/db18-0626
pubmed: 30279164
Gao Y, Cao Y, Cui X, Wang X, Zhou Y, Huang F, Wang X, Wen J, Xie K, Xu P. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway. Mol Cell Endocrinol. 2018;476:155–64. https://doi.org/10.1016/j.mce.2018.05.005 .
doi: 10.1016/j.mce.2018.05.005
pubmed: 29753771
Guo X, Zhang Z, Zeng T, Lim YC, Wang Y, Xie X, Yang S, Huang C, Xu M, Tao L. cAMP-MicroRNA-203-IFNγ network regulates subcutaneous white fat browning and glucose tolerance. Mol Metabol. 2019;28:36–47. https://doi.org/10.1016/j.molmet.2019.07.002 .
doi: 10.1016/j.molmet.2019.07.002
Hu Y, Liu L, Chen Y, Zhang X, Zhou H, Hu S, Li X, Li M, Li J, Cheng S. Cancer-cell-secreted miR-204-5p induces leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia. Nat Commun. 2023;14(1):5179. https://doi.org/10.1038/s41467-023-40571-9 .
doi: 10.1038/s41467-023-40571-9
pubmed: 37620316
pmcid: 10449837
Wang H, Chen Y, Mao X, Du M. Maternal obesity impairs fetal mitochondriogenesis and brown adipose tissue development partially via upregulation of miR-204–5p. Biochim Biophys Acta (BBA)-Mol Basis Disease. 2019;1865(10):2706–15. https://doi.org/10.1016/j.bbadis.2019.07.012 .
doi: 10.1016/j.bbadis.2019.07.012
Lhamyani S, Gentile A-M, Giráldez-Pérez RM, Feijóo-Cuaresma M, Romero-Zerbo SY, Clemente-Postigo M, Zayed H, Oliva-Olivera W, Bermúdez-Silva FJ, Salas J. miR-21 mimic blocks obesity in mice: A novel therapeutic option. Mol Ther-Nucleic Acids. 2021;26:401–16. https://doi.org/10.1016/j.omtn.2021.06.019 .
doi: 10.1016/j.omtn.2021.06.019
pubmed: 34552821
pmcid: 8426473
Zhang Y, Song K, Qi G, Yan R, Yang Y, Li Y, Wang S, Bai Z, Ge R-L. Adipose-derived exosomal miR-210/92a cluster inhibits adipose browning via the FGFR-1 signaling pathway in high-altitude hypoxia. Sci Rep. 2020;10(1):14390. https://doi.org/10.1038/s41598-020-71345-8 .
doi: 10.1038/s41598-020-71345-8
pubmed: 32873843
pmcid: 7463015
Panella R, Petri A, Desai BN, Fagoonee S, Cotton CA, Nguyen PK, Lundin EM, Wagshal A, Wang D-Z, Näär AM, et al. MicroRNA-22 is a key regulator of lipid and metabolic homeostasis. Int J Mol Sci. 2023;24(16):12870. https://doi.org/10.3390/ijms241612870 .
doi: 10.3390/ijms241612870
pubmed: 37629051
pmcid: 10454516
Karbiener M, Pisani DF, Frontini A, Oberreiter LM, Lang E, Vegiopoulos A, Mössenböck K, Bernhardt GA, Mayr T, Hildner F. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem cells. 2014;32(6):1578–90. https://doi.org/10.1002/stem.1603 .
doi: 10.1002/stem.1603
pubmed: 24375761
Lv Y, Xia F, Yu J, Sheng Y, Jin Y, Li Y, Ding G. Distinct response of adipocyte progenitors to glucocorticoids determines visceral obesity via the TEAD1-miR-27b-PRDM16 axis. Obesity. 2023;31(9):2335–48. https://doi.org/10.1002/oby.23839 .
doi: 10.1002/oby.23839
pubmed: 37574723
Yu J, Lv Y, Wang F, Kong X, Di W, Liu J, Sheng Y, Lv S, Ding G. MiR-27b-3p inhibition enhances browning of epididymal fat in high-fat diet induced obese mice. Front Endocrinol. 2019;10:38. https://doi.org/10.3389/fendo.2019.00038 .
doi: 10.3389/fendo.2019.00038
Yu J, Lv Y, Di W, Liu J, Kong X, Sheng Y, Huang M, Lv S, Qi H, Gao M. MiR-27b-3p Regulation in browning of human visceral adipose related to central obesity. Obesity. 2018;26(2):387–96. https://doi.org/10.1002/oby.22104 .
doi: 10.1002/oby.22104
pubmed: 29280351
Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism. 2014;63(2):272–82. https://doi.org/10.1016/j.metabol.2013.10.004 .
doi: 10.1016/j.metabol.2013.10.004
pubmed: 24238035
Lian W-S, Wu R-W, Chen Y-S, Ko J-Y, Wang S-Y, Jahr H, Wang F-S. MicroRNA-29a in osteoblasts represses high-fat diet-mediated osteoporosis and body adiposis through targeting leptin. Int J Mol Sci. 2021;22(17):9135. https://doi.org/10.3390/ijms22179135 .
doi: 10.3390/ijms22179135
pubmed: 34502056
pmcid: 8430888
Saha PK, Hamilton MP, Rajapakshe K, Putluri V, Felix JB, Masschelin P, Cox AR, Bajaj M, Putluri N, Coarfa C. miR-30a targets gene networks that promote browning of human and mouse adipocytes. Am J Physiol-Endocrinol Metabol. 2020;319(4):E667–77. https://doi.org/10.1152/ajpendo.00045.2020 .
doi: 10.1152/ajpendo.00045.2020
Koh EH, Chen Y, Bader DA, Hamilton MP, He B, York B, Kajimura S, McGuire SE, Hartig SM. Mitochondrial activity in human white adipocytes is regulated by the ubiquitin carrier protein 9/microRNA-30a axis. J Biol Chem. 2016;291(47):24747–55. https://doi.org/10.1074/jbc.M116.749408 .
doi: 10.1074/jbc.M116.749408
pubmed: 27758866
pmcid: 5114422
Hu F, Wang M, Xiao T, Yin B, He L, Meng W, Dong M, Liu F. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes. 2015;64(6):2056–68. https://doi.org/10.2337/db14-1117 .
doi: 10.2337/db14-1117
pubmed: 25576051
pmcid: 4876748
Ng R, Hussain NA, Zhang Q, Chang C, Li H, Fu Y, Cao L, Han W, Stunkel W, Xu F. miRNA-32 drives brown fat thermogenesis and trans-activates subcutaneous white fat browning in mice. Cell Rep. 2017;19(6):1229–46. https://doi.org/10.1016/j.celrep.2017.04.035 .
doi: 10.1016/j.celrep.2017.04.035
pubmed: 28494871
pmcid: 5637386
Li D, Liu Y, Gao W, Han J, Yuan R, Zhang M, Pang W. Inhibition of miR-324-5p increases PM20D1-mediated white and brown adipose loss and reduces body weight in juvenile mice. Eur J Pharmacol. 2019;863:172708. https://doi.org/10.1016/j.ejphar.2019.172708 .
doi: 10.1016/j.ejphar.2019.172708
pubmed: 31568785
Fischer C, Seki T, Lim S, Nakamura M, Andersson P, Yang Y, Honek J, Wang Y, Gao Y, Chen F. A miR-327–FGF10–FGFR2-mediated autocrine signaling mechanism controls white fat browning. Nat Commun. 2017;8(1):2079. https://doi.org/10.1038/s41467-017-02158-z .
doi: 10.1038/s41467-017-02158-z
pubmed: 29233981
pmcid: 5727036
Afonso MS, Verma N, van Solingen C, Cyr Y, Sharma M, Perie L, Corr EM, Schlegel M, Shanley LC, Peled D. MicroRNA-33 inhibits adaptive thermogenesis and adipose tissue beiging. Arterioscler Thromb Vasc Biol. 2021;41(4):1360–73. https://doi.org/10.1161/ATVBAHA.120.315798 .
doi: 10.1161/ATVBAHA.120.315798
pubmed: 33657886
pmcid: 8011606
Vonhögen IG, El Azzouzi H, Olieslagers S, Vasilevich A, de Boer J, Tinahones FJ, da Costa Martins PA, de Windt LJ, Murri M. MiR-337-3p promotes adipocyte browning by inhibiting TWIST1. Cells. 2020;9(4):1056. https://doi.org/10.3390/cells9041056 .
doi: 10.3390/cells9041056
pubmed: 32340411
pmcid: 7226112
Tsai N-P, Lin Y-L, Wei L-N. MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J. 2009;424(3):411–8. https://doi.org/10.1042/BJ20090915 .
doi: 10.1042/BJ20090915
pubmed: 19780716
Kiskinis E, Chatzeli L, Curry E, Kaforou M, Frontini A, Cinti S, Montana G, Parker MG, Christian M. RIP140 represses the “brown-in-white” adipocyte program including a futile cycle of triacyclglycerol breakdown and synthesis. Mol Endocrinol. 2014;28(3):344–56. https://doi.org/10.1210/me.2013-1254 .
doi: 10.1210/me.2013-1254
pubmed: 24479876
pmcid: 4207910
Fu T, Seok S, Choi S, Huang Z, Suino-Powell K, Xu HE, Kemper B, Kemper JK. MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function. Mol Cell Biol. 2014;34(22):4130–42. https://doi.org/10.1128/MCB.00596-14 .
doi: 10.1128/MCB.00596-14
pubmed: 25182532
pmcid: 4248715
Rocha A, de Lima T, de Souza G, Corrêa R, Ferrucci D, Rodrigues B, Lopes-Ramos C, Nilsson D, Knittel T, Castro P. Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression. Sci Adv. 2020;6(49):eabc6250. https://doi.org/10.1126/sciadv.abc6250 .
doi: 10.1126/sciadv.abc6250
pubmed: 33268375
pmcid: 7710362
Ge X, Sathiakumar D, Lua B, Kukreti H, Lee M, McFarlane C. Myostatin signals through miR-34a to regulate Fndc5 expression and browning of white adipocytes. Int J Obes. 2017;41(1):137–48. https://doi.org/10.1038/ijo.2016.110 .
doi: 10.1038/ijo.2016.110
Seeliger C, Krauss T, Honecker J, Mengel LA, Buekens L, Mesas-Fernández A, Skurk T, Claussnitzer M, Hauner H. miR-375 is cold exposure sensitive and drives thermogenesis in visceral adipose tissue derived stem cells. Sci Rep. 2022;12(1):9557. https://doi.org/10.1038/s41598-022-13610-6 .
doi: 10.1038/s41598-022-13610-6
pubmed: 35688898
pmcid: 9187663
Pan D, Mao C, Quattrochi B, Friedline RH, Zhu LJ, Jung DY, Kim JK, Lewis B, Wang Y-X. MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nat Commun. 2014;5:4725. https://doi.org/10.1038/ncomms5725 .
doi: 10.1038/ncomms5725
pubmed: 25145289
Abdollahi M, Kato M, Lanting L, Tunduguru R, Wang M, Wang Y, Fueger PT, Wang Q, Huang W, Natarajan R. miR-379 mediates insulin resistance and obesity through impaired angiogenesis and adipogenesis regulated by ER stress. Mol Ther Nucleic Acids. 2022;30:115–30. https://doi.org/10.1016/j.omtn.2022.09.015 .
doi: 10.1016/j.omtn.2022.09.015
pubmed: 36250205
pmcid: 9535382
Choi WH, Ahn J, Jung CH, Jang YJ, Ha TY. β-Lapachone prevents diet-induced obesity by increasing energy expenditure and stimulating the browning of white adipose tissue via downregulation of miR-382 expression. Diabetes. 2016;65(9):2490–501. https://doi.org/10.2337/db15-1423 .
doi: 10.2337/db15-1423
pubmed: 27246910
Wang M, Shao J, Zhang X, Liu Z, Tang T, Chen G, Xia S, Zhao K, Kang Z, Sun W. miR-383-5p regulates preadipocyte proliferation and differentiation by targeting RAD51AP1. Int J Mol Sci. 2023;24(18):14025. https://doi.org/10.3390/ijms241814025 .
doi: 10.3390/ijms241814025
pubmed: 37762324
pmcid: 10531573
Ye C, Duan J, Zhang X, Yao L, Song Y, Wang G, Li Q, Wang B, Ai D, Wang C. Cold-induced Yes-associated-protein expression through miR-429 mediates the browning of white adipose tissue. Sci China Life Sci. 2021;64(3):404–18. https://doi.org/10.1007/s11427-020-1779-2 .
doi: 10.1007/s11427-020-1779-2
pubmed: 32804340
Liu X, Zhu Y, Zhan S, Zhong T, Guo J, Cao J, Li L, Zhang H, Wang L. RNA-Seq reveals miRNA role in thermogenic regulation in brown adipose tissues of goats. BMC Genomics. 2022;23(1):186. https://doi.org/10.1186/s12864-022-08401-2 .
doi: 10.1186/s12864-022-08401-2
pubmed: 35255830
pmcid: 8900370
Zhang H, Guan M, Townsend KL, Huang TL, An D, Yan X, Xue R, Schulz TJ, Winnay J, Mori M. Micro RNA-455 regulates brown adipogenesis via a novel HIF 1an-AMPK-PGC 1α signaling network. EMBO Rep. 2015;16:1378–93. https://doi.org/10.15252/embr.201540837 .
doi: 10.15252/embr.201540837
pubmed: 26303948
pmcid: 4766451
Lemecha M, Morino K, Imamura T, Iwasaki H, Ohashi N, Ida S, Sato D, Sekine O, Ugi S, Maegawa H. MiR-494-3p regulates mitochondrial biogenesis and thermogenesis through PGC1-α signalling in beige adipocytes. Sci Rep. 2018;8(1):15096. https://doi.org/10.1038/s41598-018-33438-3 .
doi: 10.1038/s41598-018-33438-3
pubmed: 30305668
pmcid: 6180067
Man XF, Hu N, Tan SW, Tang HN, Guo Y, Tang CY, Liu YQ, Tang J, Zhou CL, Wang F. Insulin receptor substrate-1 inhibits high-fat diet-induced obesity by browning of white adipose tissue through miR-503. FASEB J. 2020;34(9):12308–23. https://doi.org/10.1096/fj.201903283RR .
doi: 10.1096/fj.201903283RR
pubmed: 32721050
Tan X, Zhu T, Zhang L, Fu L, Hu Y, Li H, Li C, Zhang J, Liang B, Liu J. miR-669a-5p promotes adipogenic differentiation and induces browning in preadipocytes. Adipocyte. 2022;11(1):120–32. https://doi.org/10.1080/21623945.2022.2030570 .
doi: 10.1080/21623945.2022.2030570
pubmed: 35094659
pmcid: 8803067
Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J, Schell M, Van Der Lans A, Schlein C, Froehlich H. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun. 2016;7:11420. https://doi.org/10.1038/ncomms11420 .
doi: 10.1038/ncomms11420
pubmed: 27117818
pmcid: 4853423
Goody D, Pfeifer A. MicroRNAs in brown and beige fat. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:29–36. https://doi.org/10.1016/j.bbalip.2018.05.003 .
doi: 10.1016/j.bbalip.2018.05.003
pubmed: 29758288
Rani V, Sengar RS. Biogenesis and mechanisms of microRNA-mediated gene regulation. Biotechnol Bioeng. 2022;119:685–92. https://doi.org/10.1002/bit.28029 .
doi: 10.1002/bit.28029
pubmed: 34979040
Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33:1744–62. https://doi.org/10.1016/j.cmet.2021.08.006 .
doi: 10.1016/j.cmet.2021.08.006
pubmed: 34496230
pmcid: 8428804
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. https://doi.org/10.3389/fendo.2018.00402 .
doi: 10.3389/fendo.2018.00402
pubmed: 30123182
Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, et al. Corrigendum: Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;545:252. https://doi.org/10.1038/nature22319 .
doi: 10.1038/nature22319
pubmed: 28492253
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91. https://doi.org/10.1038/s41576-019-0158-7 .
doi: 10.1038/s41576-019-0158-7
pubmed: 31395983
Thomson DW, Dinger ME. Endogenous microRNA sponges: Evidence and controversy. Nat Rev Genet. 2016;17:272–83. https://doi.org/10.1038/nrg.2016.20 .
doi: 10.1038/nrg.2016.20
pubmed: 27040487
Liu K, Liu X, Deng Y, Li Z, Tang A. CircRNA-mediated regulation of brown adipose tissue adipogenesis. Front Nutr. 2022;9:926024. https://doi.org/10.3389/fnut.2022.926024 .
doi: 10.3389/fnut.2022.926024
pubmed: 35967789
pmcid: 9372764
Shao J, Wang M, Zhang A, Liu Z, Jiang G, Tang T, Wang J, Jia X, Lai S. Interference of a mammalian circRNA regulates lipid metabolism reprogramming by targeting miR-24–3p/Igf2/PI3K-AKT-mTOR and Igf2bp2/Ucp1 axis. Cell Mol Life Sci. 2023;80(9):252. https://doi.org/10.1007/s00018-023-04899-1 .
doi: 10.1007/s00018-023-04899-1
pubmed: 37587272
Hu C, Feng X, Ma Y, Wei D, Zhang L, Wang S, Ma Y. CircADAMTS16 inhibits differentiation and promotes proliferation of bovine adipocytes by targeting miR-10167-3p. Cells. 2023;12(8):1175. https://doi.org/10.3390/cells12081175 .
doi: 10.3390/cells12081175
pubmed: 37190084
pmcid: 10136946
Song X-H, He N, Xing Y-T, Jin X-Q, Li Y-W, Liu S-S, Gao Z-Y, Guo C, Wang J-J, Huang Y-Y. A novel age-related circular RNA circ-ATXN2 inhibits proliferation, promotes cell death and adipogenesis in rat adipose tissue-derived stromal cells. Frontiers in Genetics. 2021;12:761926. https://doi.org/10.3389/fgene.2021.761926 .
Zhang S, Jiang E, Kang Z, Bi Y, Liu H, Xu H, Wang Z, Lei C, Chen H, Lan X. CircRNA profiling reveals an abundant circBDP1 that regulates bovine fat development by sponging miR-181b/miR-204 targeting Sirt1/TRARG1. J Agric Food Chem. 2022;70:14312–28. https://doi.org/10.1021/acs.jafc.2c05939 .
doi: 10.1021/acs.jafc.2c05939
pubmed: 36269615
Tian W, Liu Y, Zhang W, Nie R, Ling Y, Zhang B, Zhang H, Wu C. CircDOCK7 facilitates the proliferation and adipogenic differentiation of chicken abdominal preadipocytes through the gga-miR-301b-3p/ACSL1 axis. J Anim Sci Biotechnol. 2023;14:91. https://doi.org/10.1186/s40104-023-00891-8 .
doi: 10.1186/s40104-023-00891-8
pubmed: 37408086
pmcid: 10324207
Zhu Y, Gui W, Lin X, Li H. Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1. Exp Cell Res. 2020;387:111753. https://doi.org/10.1016/j.yexcr.2019.111753 .
doi: 10.1016/j.yexcr.2019.111753
pubmed: 31837293
Chen S, Song P, Wang Y, Wang Z, Xue J, Jiang Y, Zhou Y, Zhao J, Tang L. CircMAPK9 promotes adipogenesis through modulating hsa-miR-1322/FTO axis in obesity. Iscience. 2023;26(10):107756. https://doi.org/10.1016/j.isci.2023.107756 .
doi: 10.1016/j.isci.2023.107756
pubmed: 37692283
pmcid: 10492215
Zhang T, Zhang Z, Xia T, Liu C, Sun C. circNrxn2 promoted WAT browning via sponging miR-103 to relieve its inhibition of FGF10 in HFD mice. Mol Ther-Nucleic Acids. 2019;17:551–62. https://doi.org/10.1016/j.omtn.2019.06.019 .
doi: 10.1016/j.omtn.2019.06.019
pubmed: 31362242
pmcid: 6661467
Ding Z, Sun D, Han J, Shen L, Yang F, Sah S, Sui X, Wu G. Novel noncoding RNA CircPTK2 regulates lipolysis and adipogenesis in cachexia. Mol Metab. 2021;53:101310. https://doi.org/10.1016/j.molmet.2021.101310 .
doi: 10.1016/j.molmet.2021.101310
pubmed: 34311131
pmcid: 8365522
Liu Y, Liu H, Li Y, Mao R, Yang H, Zhang Y, Zhang Y, Guo P, Zhan D, Zhang T. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis. Theranostics. 2020;10:4705. https://doi.org/10.7150/thno.42417 .
doi: 10.7150/thno.42417
pubmed: 32292524
pmcid: 7150479
Yue X, Fan M, Liang Y, Qiao L, Liu J, Pan Y, Yang K, Liu W. circITGB1 regulates adipocyte proliferation and differentiation via the miR-23a/ARRB1 pathway. Int J Mol Sci. 2023;24:1976. https://doi.org/10.3390/ijms24031976 .
doi: 10.3390/ijms24031976
pubmed: 36768295
pmcid: 9916083
Chen H, Zhang J, Yang L, Li Y, Wang Z, Ye C. circ-ZEB1 regulates epithelial-mesenchymal transition and chemotherapy resistance of colorectal cancer through acting on miR-200c-5p. Transl Oncol. 2023;28:101604. https://doi.org/10.1016/j.tranon.2022.101604 .
doi: 10.1016/j.tranon.2022.101604
pubmed: 36542990
Zhi F, Ding Y, Wang R, Yang Y, Luo K, Hua F. Correction: Exosomal hsa_circ_0006859 is a potential biomarker for postmenopausal osteoporosis and enhances adipogenic versus osteogenic differentiation in human bone marrow mesenchymal stem cells by sponging miR-431-5p. Stem Cell Res Ther. 2022;13:381. https://doi.org/10.1186/s13287-022-03096-4 .
doi: 10.1186/s13287-022-03096-4
pubmed: 35906631
pmcid: 9338562
Zhang X, Chen L, Xiao B, Liu H, Su Y. Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-kappaB pathway. Biochem Biophys Res Commun. 2019;511:551–8. https://doi.org/10.1016/j.bbrc.2019.02.082 .
doi: 10.1016/j.bbrc.2019.02.082
pubmed: 30824182
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov. 2021;20:629–51. https://doi.org/10.1038/s41573-021-00219-z .
doi: 10.1038/s41573-021-00219-z
pubmed: 34145432
pmcid: 8212082
Yang J, Meng X, Pan J, Jiang N, Zhou C, Wu Z, Gong Z. CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol. 2018;15:35–43. https://doi.org/10.1080/15476286.2017.1391443 .
doi: 10.1080/15476286.2017.1391443
pubmed: 29028415
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, Hahne JC. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol. 2020;15:261–78. https://doi.org/10.1007/s11523-020-00717-x .
doi: 10.1007/s11523-020-00717-x
pubmed: 32451752
pmcid: 7283209
Li C, Zhang L. Noncoding RNAs in human cancer: One step forward in diagnosis and treatment. Brief Funct Genomics. 2016;15:165–6. https://doi.org/10.1093/bfgp/elw004 .
doi: 10.1093/bfgp/elw004
pubmed: 27226104
pmcid: 5863789
Zhao R, Fu J, Zhu L, Chen Y, Liu B. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. J Hematol Oncol. 2022;15:14. https://doi.org/10.1186/s13045-022-01230-6 .
doi: 10.1186/s13045-022-01230-6
pubmed: 35123522
pmcid: 8817562
Ortega FJ, Mercader JM, Catalan V, Moreno-Navarrete JM, Pueyo N, Sabater M, Gomez-Ambrosi J, Anglada R, Fernandez-Formoso JA, Ricart W, et al. Targeting the circulating microRNA signature of obesity. Clin Chem. 2013;59:781–92. https://doi.org/10.1373/clinchem.2012.195776 .
doi: 10.1373/clinchem.2012.195776
pubmed: 23396142
Lorente-Cebrian S, Gonzalez-Muniesa P, Milagro FI, Martinez JA. MicroRNAs and other non-coding RNAs in adipose tissue and obesity: Emerging roles as biomarkers and therapeutic targets. Clin Sci (Lond). 2019;133:23–40. https://doi.org/10.1042/CS20180890 .
doi: 10.1042/CS20180890
pubmed: 30606812
Perez-Hernandez J, Riffo-Campos AL, Ortega A, Martinez-Arroyo O, Perez-Gil D, Olivares D, Solaz E, Martinez F, Martinez-Hervas S, Chaves FJ, et al. Urinary- and plasma-derived exosomes reveal a distinct MicroRNA signature associated with albuminuria in hypertension. Hypertension. 2021;77:960–71. https://doi.org/10.1161/HYPERTENSIONAHA.120.16598 .
doi: 10.1161/HYPERTENSIONAHA.120.16598
pubmed: 33486986
Vonhogen IGC, Mohseni Z, Winkens B, Xiao K, Thum T, Calore M, da Costa Martins PA, de Windt LJ, Spaanderman MEA, Ghossein-Doha C. Circulating miR-216a as a biomarker of metabolic alterations and obesity in women. Noncoding RNA Res. 2020;5:144–52. https://doi.org/10.1016/j.ncrna.2020.08.001 .
doi: 10.1016/j.ncrna.2020.08.001
pubmed: 32954093
pmcid: 7479169
Zhang K, Wan X, Khan MA, Sun X, Yi X, Wang Z, Chen K, Peng L. Peripheral blood circRNA microarray profiling identities hsa_circ_0001831 and hsa_circ_0000867 as two novel circRNA biomarkers for early type 2 diabetic nephropathy. Diabetes Metab Syndr Obes. 2022;15:2789–801. https://doi.org/10.2147/DMSO.S384054 .
doi: 10.2147/DMSO.S384054
pubmed: 36118796
pmcid: 9473550
Amri EZ, Scheideler M. Small non coding RNAs in adipocyte biology and obesity. Mol Cell Endocrinol. 2017;456:87–94. https://doi.org/10.1016/j.mce.2017.04.009 .
doi: 10.1016/j.mce.2017.04.009
pubmed: 28412522
Hueso M, Mallen A, Sune-Pou M, Aran JM, Sune-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and limitations in nucleic acid-based drug delivery. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms222111596 .
Pierce JB, Zhou H, Simion V, Feinberg MW. Long noncoding RNAs as therapeutic targets. Adv Exp Med Biol. 2022;1363:161–75. https://doi.org/10.1007/978-3-030-92034-0_9 .
doi: 10.1007/978-3-030-92034-0_9
pubmed: 35220570
Schachner-Nedherer A-L, Fuchs J, Vidakovic I, Höller O, Schratter G, Almer G, Fröhlich E, Zimmer A, Wabitsch M, Kornmueller K. Lipid nanoparticles as a shuttle for anti-adipogenic miRNAs to human adipocytes. Pharmaceutics. 2023;15:1983. https://doi.org/10.3390/pharmaceutics15071983 .
doi: 10.3390/pharmaceutics15071983
pubmed: 37514169
pmcid: 10384627
Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35:222–9. https://doi.org/10.1038/nbt.3802 .
doi: 10.1038/nbt.3802
pubmed: 28244992
Jiang L, Li J. lncRNA GMDS-AS1 upregulates IL-6, TNF-alpha and IL-1beta, and induces apoptosis in human monocytic THP-1 cells via miR-96-5p/caspase 2 signaling. Mol Med Rep. 2022;25(2):67. https://doi.org/10.3892/mmr.2022.12583 .
doi: 10.3892/mmr.2022.12583
pubmed: 34981821
pmcid: 8767548
Chini A, Guha P, Malladi VS, Guo Z, Mandal SS. Novel long non-coding RNAs associated with inflammation and macrophage activation in human. Sci Rep. 2023;13:4036. https://doi.org/10.1038/s41598-023-30568-1 .
doi: 10.1038/s41598-023-30568-1
pubmed: 36899011
pmcid: 10006430
Li N, Liu Y, Cai J. LncRNA MIR155HG regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease. Biomed Pharmacother. 2019;117:109015. https://doi.org/10.1016/j.biopha.2019.109015 .
doi: 10.1016/j.biopha.2019.109015
pubmed: 31207576
Li Z, Rana TM. Therapeutic targeting of microRNAs: Current status and future challenges. Nat Rev Drug Discov. 2014;13:622–38. https://doi.org/10.1038/nrd4359 .
doi: 10.1038/nrd4359
pubmed: 25011539
Guan S, Zhang Z, Wu J. Non-coding RNA delivery for bone tissue engineering: Progress, challenges, and potential solutions. iScience. 2022;25:104807. https://doi.org/10.1016/j.isci.2022.104807 .
doi: 10.1016/j.isci.2022.104807
pubmed: 35992068
pmcid: 9385673
Scheideler M, Vidakovic I, Prassl R. Lipid nanocarriers for microRNA delivery. Chem Phys Lipids. 2020;226:104837. https://doi.org/10.1016/j.chemphyslip.2019.104837 .
doi: 10.1016/j.chemphyslip.2019.104837
pubmed: 31689410
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 2021;1875(1):188491. https://doi.org/10.1016/j.bbcan.2020.188491 .
doi: 10.1016/j.bbcan.2020.188491
pubmed: 33316377