Iron Dyshomeostasis and Mitochondrial Function in the Failing Heart: A Review of the Literature.
Journal
American journal of cardiovascular drugs : drugs, devices, and other interventions
ISSN: 1179-187X
Titre abrégé: Am J Cardiovasc Drugs
Pays: New Zealand
ID NLM: 100967755
Informations de publication
Date de publication:
29 Dec 2023
29 Dec 2023
Historique:
accepted:
20
11
2023
medline:
2
1
2024
pubmed:
2
1
2024
entrez:
29
12
2023
Statut:
aheadofprint
Résumé
Cardiac contraction and relaxation require a substantial amount of energy provided by the mitochondria. The failing heart is adenosine triphosphate (ATP)- and creatine-depleted. Studies have found iron is involved in almost every aspect of mitochondrial function, and previous studies have shown myocardial iron deficiency in heart failure (HF). Many clinicians advocated intravenous iron repletion for HF patients meeting the conventional criteria for systemic iron deficiency. While clinical trials showed improved quality of life, iron repletion failed to significantly impact survival or significant cardiovascular adverse events. There is evidence that in HF, labile iron is trapped inside the mitochondria causing oxidative stress and lipid peroxidation. There is also compelling preclinical evidence demonstrating the detrimental effects of both iron overload and depletion on cardiomyocyte function. We reviewed the mechanisms governing myocardial and mitochondrial iron content. Mitochondrial dynamics (i.e., fusion, fission, mitophagy) and the role of iron were also investigated. Ferroptosis, as an important regulated cell death mechanism involved in cardiomyocyte loss, was reviewed along with agents used to manipulate it. The membrane stability and iron content of mitochondria can be altered by many agents. Some studies are showing promising improvement in the cardiomyocyte function after iron chelation by deferiprone; however, whether the in vitro and in vivo findings will be reflected on on clinical grounds is still unclear. Finally, we briefly reviewed the clinical trials on intravenous iron repletion. There is a need for more well-simulated animal studies to shed light on the safety and efficacy of chelation agents and pave the road for clinical studies.
Identifiants
pubmed: 38157159
doi: 10.1007/s40256-023-00619-z
pii: 10.1007/s40256-023-00619-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, et al. Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14(4):238–50.
pubmed: 28004807
doi: 10.1038/nrcardio.2016.203
Nickel A, Löffler J, Maack C. Myocardial energetics in heart failure. Basic Res Cardiol. 2013;108(4):358.
pubmed: 23740216
doi: 10.1007/s00395-013-0358-9
Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R, Fujiwara H. Autophagic Degeneration and Death of Cardiomyocytes in Heart Failure. Autophagy. 2006;2(3):212–4.
pubmed: 16874110
doi: 10.4161/auto.2608
Re DPD, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99(4):1765–817.
pubmed: 31364924
pmcid: 6890986
doi: 10.1152/physrev.00022.2018
Tang D, Kroemer G. Ferroptosis. Curr Biol. 2020;30(21):R1292–7.
pubmed: 33142092
doi: 10.1016/j.cub.2020.09.068
Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and iron: current questions. Expert Rev Hematol. 2017;10(1):65–79.
pubmed: 27911100
doi: 10.1080/17474086.2016.1268047
Kasztura M, Dzięgała M, Kobak K, Bania J, Mazur G, Banasiak W, et al. Both iron excess and iron depletion impair viability of rat H9C2 cardiomyocytes and L6G8C5 myocytes. Kardiol Pol. 2017;75(3):267–75.
pubmed: 27747853
doi: 10.5603/KP.a2016.0155
Klip IT, Comin-Colet J, Voors AA, Ponikowski P, Enjuanes C, Banasiak W, et al. Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J. 2013;165(4):575-82.e3.
pubmed: 23537975
doi: 10.1016/j.ahj.2013.01.017
Ebner N, Jankowska EA, Ponikowski P, Lainscak M, Elsner S, Sliziuk V, et al. The impact of iron deficiency and anaemia on exercise capacity and outcomes in patients with chronic heart failure. Results from the studies investigating co-morbidities aggravating heart failure. Int J Cardiol. 2016;205:6–12.
pubmed: 26705670
doi: 10.1016/j.ijcard.2015.11.178
Groenveld HF, Januzzi JL, Damman K, van Wijngaarden J, Hillege HL, van Veldhuisen DJ, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol. 2008;52(10):818–27.
pubmed: 18755344
doi: 10.1016/j.jacc.2008.04.061
Charles-Edwards G, Amaral N, Sleigh A, Ayis S, Catibog N, McDonagh T, et al. Effect of iron isomaltoside on skeletal muscle energetics in patients with chronic heart failure and iron deficiency. Circulation. 2019;139(21):2386–98.
pubmed: 30776909
doi: 10.1161/CIRCULATIONAHA.118.038516
Tkaczyszyn M, Drozd M, Węgrzynowska-Teodorczyk K, Flinta I, Kobak K, Banasiak W, et al. Depleted iron stores are associated with inspiratory muscle weakness independently of skeletal muscle mass in men with systolic chronic heart failure. J Cachexia Sarcopenia Muscle. 2018;9(3):547–56.
pubmed: 29573220
pmcid: 5989741
doi: 10.1002/jcsm.12282
Ganz T, Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol. 2006;290(2):G199-203.
pubmed: 16407589
doi: 10.1152/ajpgi.00412.2005
Yang X, Kawasaki NK, Min J, Matsui T, Wang F. Ferroptosis in heart failure. J Mol Cell Cardiol. 2022;173:141–53.
pubmed: 36273661
doi: 10.1016/j.yjmcc.2022.10.004
Wu X, Li Y, Zhang S, Zhou X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11(7):3052–9.
pubmed: 33537073
pmcid: 7847684
doi: 10.7150/thno.54113
Anand I, Rector T, Deswal A, Iverson E, Anderson S, Mann D, et al., editors. Relationship between proinflammatory cytokines and anemia in heart failure. Eur Heart J. 2006;27:485–485.
Anand IS, Gupta P. Anemia and iron deficiency in heart failure. Circulation. 2018;138(1):80–98.
pubmed: 29967232
doi: 10.1161/CIRCULATIONAHA.118.030099
Opasich C, Cazzola M, Scelsi L, De Feo S, Bosimini E, Lagioia R, et al. Blunted erythropoietin production and defective iron supply for erythropoiesis as major causes of anaemia in patients with chronic heart failure. Eur Heart J. 2005;26(21):2232–7.
pubmed: 15987710
doi: 10.1093/eurheartj/ehi388
Fyhrquist F, Karppinen K, Honkanen T, Saijonmaa O, Rosenlöf K. High serum erythropoietin levels are normalized during treatment of congestive heart failure with enalapril. J Intern Med. 1989;226(4):257–60.
pubmed: 2553845
doi: 10.1111/j.1365-2796.1989.tb01390.x
van der Meer P, Lipsic E, Westenbrink BD, van de Wal RM, Schoemaker RG, Vellenga E, et al. Levels of hematopoiesis inhibitor N-acetyl-seryl-aspartyl-lysyl-proline partially explain the occurrence of anemia in heart failure. Circulation. 2005;112(12):1743–7.
pubmed: 16172283
doi: 10.1161/CIRCULATIONAHA.105.549121
Sica DS. Pharmacotherapy in congestive heart failure: ACE inhibitors and anemia in congestive heart failure. Congestive Heart Fail (Greenwich, Conn). 2000;6(6):330–2.
doi: 10.1111/j.1527-5299.2000.80177.x
Docherty KF, Welsh P, Verma S, Boer RAD, O’Meara E, Bengtsson O, et al. iron deficiency in heart failure and effect of dapagliflozin: findings from DAPA-HF. Circulation. 2022;146(13):980–94.
pubmed: 35971840
pmcid: 9508991
doi: 10.1161/CIRCULATIONAHA.122.060511
Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, et al. Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail. 2017;19(4):522–30.
pubmed: 27647766
doi: 10.1002/ejhf.640
Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol. 2006;121(2):144–58.
pubmed: 16904380
doi: 10.1016/j.clim.2006.06.010
Yanatori I, Kishi F. DMT1 and iron transport. Free Radical Biol Med. 2019;133:55–63.
doi: 10.1016/j.freeradbiomed.2018.07.020
Otto-Duessel M, Brewer C, Wood JC. Interdependence of cardiac iron and calcium in a murine model of iron overload. Transl Res. 2011;157(2):92–9.
pubmed: 21256461
doi: 10.1016/j.trsl.2010.11.002
Fernandes JL, Loggetto SR, Veríssimo MPA, Fertrin KY, Baldanzi GR, Fioravante LAB, et al. A randomized trial of amlodipine in addition to standard chelation therapy in patients with thalassemia major. Blood. 2016;128(12):1555–61.
pubmed: 27412888
doi: 10.1182/blood-2016-06-721183
Ward DM, Kaplan J. Ferroportin-mediated iron transport: expression and regulation. Biochem Biophys Acta. 2012;1823(9):1426–33.
pubmed: 22440327
doi: 10.1016/j.bbamcr.2012.03.004
Kozłowska B, Sochanowicz B, Kraj L, Palusińska M, Kołsut P, Szymański Ł, et al. Expression of iron metabolism proteins in patients with chronic heart failure. J Clin Med. 2022;11(3).
Maeder MT, Khammy O, dos Remedios C, Kaye DM. Myocardial and systemic iron depletion in heart failure implications for anemia accompanying heart failure. J Am Coll Cardiol. 2011;58(5):474–80.
pubmed: 21777743
doi: 10.1016/j.jacc.2011.01.059
Zhou ZD, Tan E-K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener. 2017;12(1):75.
pubmed: 29061112
pmcid: 5654065
doi: 10.1186/s13024-017-0218-4
Casey JL, Hentze MW, Koeller DM, Caughman SW, Rouault TA, Klausner RD, et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988;240(4854):924–8.
pubmed: 2452485
doi: 10.1126/science.2452485
Wilkinson N, Pantopoulos K. The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol. 2014;5:176.
pubmed: 25120486
pmcid: 4112806
doi: 10.3389/fphar.2014.00176
Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM, et al. Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J. 2016;38(5):362–72.
Lakhal-Littleton S, Wolna M, Chung YJ, Christian HC, Heather LC, Brescia M, et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 2016;5: e19804.
pubmed: 27897970
pmcid: 5176354
doi: 10.7554/eLife.19804
Packer M. How can sodium–glucose cotransporter 2 inhibitors stimulate erythrocytosis in patients who are iron-deficient? Implications for understanding iron homeostasis in heart failure. Eur J Heart Fail. 2022;24(12):2287–96.
pubmed: 36377108
doi: 10.1002/ejhf.2731
Hirsch VG, Tongers J, Bode J, Berliner D, Widder JD, Escher F, et al. Cardiac iron concentration in relation to systemic iron status and disease severity in non-ischaemic heart failure with reduced ejection fraction. Eur J Heart Fail. 2020;22(11):2038–46.
pubmed: 32155309
doi: 10.1002/ejhf.1781
Leszek P, Sochanowicz B, Szperl M, Kolsut P, Brzóska K, Piotrowski W, et al. Myocardial iron homeostasis in advanced chronic heart failure patients. Int J Cardiol. 2012;159(1):47–52.
pubmed: 21899903
doi: 10.1016/j.ijcard.2011.08.006
Leszek P, Lewicki S, Kozlowska B, Sochanowicz B, Kolsut P, Szymanski L, et al. The relation among myocardial iron load and the severity of heart failure. Eur Heart J. 2022;43(Suppl):2.
Leszek P, Sochanowicz B, Brzóska K, Kraj L, Kuśmierczyk M, Śmigielski W, et al. accurate noninvasive assessment of myocardial iron load in advanced heart failure patients. Dis Markers. 2020;2020:8885189.
pubmed: 33224316
pmcid: 7669354
doi: 10.1155/2020/8885189
Núñez J, Miñana G, Cardells I, Palau P, Llàcer P, Fácila L, et al. Noninvasive imaging estimation of myocardial iron repletion following administration of intravenous iron: the myocardial–IRON trial. J Am Heart Assoc. 2020;9(4): e014254.
pubmed: 32067585
pmcid: 7070181
doi: 10.1161/JAHA.119.014254
Ward DM, Cloonan SM. Mitochondrial iron in human health and disease. Annu Rev Physiol. 2019;81:453–82.
pubmed: 30485761
doi: 10.1146/annurev-physiol-020518-114742
Chandel NS. EVOLUTION of mitochondria as signaling organelles. Cell Metab. 2015;22(2):204–6.
pubmed: 26073494
doi: 10.1016/j.cmet.2015.05.013
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–67.
pubmed: 23102266
pmcid: 3484374
doi: 10.1016/j.molcel.2012.09.025
Sabbah HN, Sharov V, Riddle JM, Kono T, Lesch M, Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol. 1992;24(11):1333–47.
pubmed: 1479624
doi: 10.1016/0022-2828(92)93098-5
Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, et al. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol. 2020;27(5):494–510.
pubmed: 31412712
doi: 10.1177/2047487319870344
Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation. 2010;121(14):1606–13.
pubmed: 20351235
pmcid: 2946079
doi: 10.1161/CIRCULATIONAHA.109.914911
Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Fukai K, et al. Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circ Heart Fail. 2014;7(3):500–9.
pubmed: 24740269
doi: 10.1161/CIRCHEARTFAILURE.113.001062
Nulton-Persson AC, Szweda LI. Modulation of mitochondrial function by hydrogen peroxide. J Biol Chem. 2001;276(26):23357–61.
pubmed: 11283020
doi: 10.1074/jbc.M100320200
Gardner PR, Raineri I, Epstein LB, White CW. Superoxide radical and iron modulate aconitase activity in mammalian cells∗. J Biol Chem. 1995;270(22):13399–405.
pubmed: 7768942
doi: 10.1074/jbc.270.22.13399
Vermorken AJM, Zhu J, Holvoet P, Cui Y. The marker of cobalamin deficiency, plasma methylmalonic acid, may help identifying lysosomal iron trapping in patients. Its possible utility for heart failure. Redox Biol. 2021;44:102011.
pubmed: 34049219
pmcid: 8170149
doi: 10.1016/j.redox.2021.102011
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation—a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta (BBA)-Mol Cell Res. 2011;1813(7):1333–50.
doi: 10.1016/j.bbamcr.2011.01.015
Igarashi N, Nozawa T, Fujii N, Suzuki T, Matsuki A, Nakadate T, et al. Influence of β-adrenoceptor blockade on the myocardial accumulation of fatty acid tracer and its intracellular metabolism in the heart after ischemia-reperfusion injury. Circ J. 2006;70(11):1509–14.
pubmed: 17062979
doi: 10.1253/circj.70.1509
Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133(8):698–705.
pubmed: 26819376
pmcid: 4766035
doi: 10.1161/CIRCULATIONAHA.115.017355
Maejima Y. SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front Cardiovasc Med. 2020;6.
Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet. 2005;14(Suppl 2):R283–9.
pubmed: 16244327
doi: 10.1093/hmg/ddi270
Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001;114(5):867–74.
pubmed: 11181170
doi: 10.1242/jcs.114.5.867
Ren L, Chen X, Chen X, Li J, Cheng B, Xia J. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells. Front Cell Dev Biol. 2020;8.
Chen Y, Csordás G, Jowdy C, Schneider TG, Csordás N, Wang W, et al. Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk. Circ Res. 2012;111(7):863–75.
pubmed: 22777004
pmcid: 3444672
doi: 10.1161/CIRCRESAHA.112.266585
Losón OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24(5):659–67.
pubmed: 23283981
pmcid: 3583668
doi: 10.1091/mbc.e12-10-0721
Stansfield WE, Ranek M, Pendse A, Schisler JC, Wang S, Pulinilkunnil T, et al. Chapter 4—the pathophysiology of cardiac hypertrophy and heart failure. In: Willis MS, Homeister JW, Stone JR, editors., et al., Cellular and molecular pathobiology of cardiovascular disease. San Diego: Academic Press; 2014. p. 51–78.
doi: 10.1016/B978-0-12-405206-2.00004-1
Papanicolaou KN, Kikuchi R, Ngoh GA, Coughlan KA, Dominguez I, Stanley WC, et al. Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res. 2012;111(8):1012–26.
pubmed: 22904094
pmcid: 3518037
doi: 10.1161/CIRCRESAHA.112.274142
Song M, Mihara K, Chen Y, Scorrano L, Dorn GW. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 2015;21(2):273–86.
pubmed: 25600785
pmcid: 4318753
doi: 10.1016/j.cmet.2014.12.011
Khamseekaew J, Kumfu S, Wongjaikam S, Kerdphoo S, Jaiwongkam T, Srichairatanakool S, et al. Effects of iron overload, an iron chelator and a T-Type calcium channel blocker on cardiac mitochondrial biogenesis and mitochondrial dynamics in thalassemic mice. Eur J Pharmacol. 2017;799:118–27.
pubmed: 28192097
doi: 10.1016/j.ejphar.2017.02.015
Schiavi A, Strappazzon F, Ventura N. Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mech Ageing Dev. 2020;188: 111252.
pubmed: 32330468
doi: 10.1016/j.mad.2020.111252
Weil R, Laplantine E, Curic S, Génin P. Role of optineurin in the mitochondrial dysfunction: potential implications in neurodegenerative diseases and cancer. Front Immunol. 2018;9.
Kataura T, Otten EG, Rabanal-Ruiz Y, Adriaenssens E, Urselli F, Scialo F, Fan L, Smith GR, Dawson WM, Chen X, Yue WW, Bronowska AK, Carroll B, Martens S, Lazarou M, Korolchuk VI. NDP52 acts as a redox sensor in PINK1/Parkin-mediated mitophagy. EMBO J. 2023 Mar 1;42(5):e111372.
Zhang R, Krigman J, Luo H, Ozgen S, Yang M, Sun N. Mitophagy in cardiovascular homeostasis. Mech Ageing Dev. 2020;188: 111245.
pubmed: 32289324
pmcid: 7375934
doi: 10.1016/j.mad.2020.111245
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309–14.
pubmed: 26266977
pmcid: 5018156
doi: 10.1038/nature14893
Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, et al. Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep. 2020;21(11): e50202.
pubmed: 32975364
pmcid: 7645172
doi: 10.15252/embr.202050202
Tsaousis AD. On the origin of Iron/Sulfur cluster biosynthesis in eukaryotes. Front Microbiol. 2019;10:2478.
pubmed: 31781051
pmcid: 6857552
doi: 10.3389/fmicb.2019.02478
Freibert S-A, Goldberg AV, Hacker C, Molik S, Dean P, Williams TA, et al. Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis. Nat Commun. 2017;8(1):13932.
pubmed: 28051091
pmcid: 5216125
doi: 10.1038/ncomms13932
Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail. 2018;20(5):910–9.
pubmed: 29484788
doi: 10.1002/ejhf.1154
Ling Y, Yang X, Zhang X, Guan F, Qi X, Dong W, et al. Myocardium-specific Isca1 knockout causes iron metabolism disorder and myocardial oncosis in rat. Life Sci. 2022;297: 120485.
pubmed: 35304126
doi: 10.1016/j.lfs.2022.120485
Petrat F, de Groot H, Rauen U. Subcellular distribution of chelatable iron: a laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. Biochem J. 2001;356(Pt 1):61–9.
pubmed: 11336636
pmcid: 1221812
doi: 10.1042/bj3560061
Huang ML-H, Becker EM, Whitnall M, Rahmanto YS, Ponka P, Richardson DR. Elucidation of the mechanism of mitochondrial iron loading in Friedreich’s ataxia by analysis of a mouse mutant. Proc Natl Acad Sci. 2009;106(38):16381–6.
pubmed: 19805308
pmcid: 2752539
doi: 10.1073/pnas.0906784106
Kakhlon O, Manning H, Breuer W, Melamed-Book N, Lu C, Cortopassi G, et al. Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation. Blood. 2008;112(13):5219–27.
pubmed: 18796625
doi: 10.1182/blood-2008-06-161919
Link G, Saada A, Pinson A, Konijn AM, Hershko C. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J Lab Clin Med. 1998;131(5):466–74.
pubmed: 9605112
doi: 10.1016/S0022-2143(98)90148-2
Link G, Konijn AM, Hershko C. Cardioprotective effect of α-tocopherol, ascorbate, deferoxamine, and deferiprone: MItochondrial function in cultured, iron-loaded heart cells. J Lab Clin Med. 1999;133(2):179–88.
pubmed: 9989770
doi: 10.1016/S0022-2143(99)90011-2
He H, Qiao Y, Zhou Q, Wang Z, Chen X, Liu D, et al. Iron overload damages the endothelial mitochondria via the ROS/ADMA/DDAHII/eNOS/NO pathway. Oxid Med Cell Longev. 2019;2019:2340392.
pubmed: 31781327
pmcid: 6875360
doi: 10.1155/2019/2340392
Duffy SJ, Biegelsen ES, Holbrook M, Russell JD, Gokce N, Keaney JF Jr, et al. Iron chelation improves endothelial function in patients with coronary artery disease. Circulation. 2001;103(23):2799–804.
pubmed: 11401935
doi: 10.1161/01.CIR.103.23.2799
Chan S, Lian Q, Chen M-P, Jiang D, Ho JTK, Cheung Y-F, et al. Deferiprone inhibits iron overload-induced tissue factor bearing endothelial microparticle generation by inhibition oxidative stress induced mitochondrial injury, and apoptosis. Toxicol Appl Pharmacol. 2018;338:148–58.
pubmed: 29132816
doi: 10.1016/j.taap.2017.11.005
Ikeda Y, Tajima S, Yoshida S, Yamano N, Kihira Y, Ishizawa K, et al. Deferoxamine promotes angiogenesis via the activation of vascular endothelial cell function. Atherosclerosis. 2011;215(2):339–47.
pubmed: 21315355
doi: 10.1016/j.atherosclerosis.2011.01.009
Khechaduri A, Bayeva M, Chang H-C, Ardehali H. Heme levels are increased in human failing hearts. J Am Coll Cardiol. 2013;61(18):1884–93.
pubmed: 23500306
pmcid: 3739715
doi: 10.1016/j.jacc.2013.02.012
Sawicki KT, Shang M, Wu R, Chang HC, Khechaduri A, Sato T, et al. Increased heme levels in the heart lead to exacerbated ischemic injury. J Am Heart Assoc. 2015;4(8): e002272.
pubmed: 26231844
pmcid: 4599478
doi: 10.1161/JAHA.115.002272
Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, et al. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med. 2016;8(3):247–67.
pubmed: 26896449
pmcid: 4772952
doi: 10.15252/emmm.201505748
Dunn LL, Kong SMY, Tumanov S, Chen W, Cantley J, Ayer A, et al. Hmox1 (Heme Oxygenase-1) protects against ischemia-mediated injury via stabilization of HIF-1α (Hypoxia-Inducible Factor-1α). Arterioscler Thromb Vasc Biol. 2021;41(1):317–30.
pubmed: 33207934
Tomczyk M, Kraszewska I, Dulak J, Jazwa-Kusior A. Modulation of the monocyte/macrophage system in heart failure by targeting heme oxygenase-1. Vascul Pharmacol. 2019;112:79–90.
pubmed: 30213580
doi: 10.1016/j.vph.2018.08.011
Chen X, Wan W, Guo Y, Ye T, Fo Y, Sun Y, et al. Pinocembrin ameliorates post-infarct heart failure through activation of Nrf2/HO-1 signaling pathway. Mol Med. 2021;27(1):100.
pubmed: 34488618
pmcid: 8422663
doi: 10.1186/s10020-021-00363-7
Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, et al. Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci. 2022;7(8):800–19.
pubmed: 36061338
pmcid: 9436815
doi: 10.1016/j.jacbts.2022.03.012
Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18(4):357–68.
pubmed: 15004004
doi: 10.1101/gad.1177604
Gupta RC, Szekely K, Wang M, Zhang K, Rastogi S, Albrecht-Küpper B, et al. Long-term therapy with the partial adenosine A
doi: 10.1016/S0735-1097(13)60702-0
Sohn YS, Breuer W, Munnich A, Cabantchik ZI. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood. 2008;111(3):1690–9.
pubmed: 17975016
doi: 10.1182/blood-2007-07-102335
Sohn Y-S, Breuer W, Munnich A, Cabantchik ZI. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood J Am Soc Hematol. 2008;111(3):1690–9.
Zou C, Liu X, Xie R, Bao Y, Jin Q, Jia X, et al. Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochem Biophys Res Commun. 2017;486(4):930–6.
pubmed: 28347819
doi: 10.1016/j.bbrc.2017.03.127
Goncalves S, Paupe V, Dassa EP, Rustin P. Deferiprone targets aconitase: Implication for Friedreich’s ataxia treatment. BMC Neurol. 2008;8(1):20.
pubmed: 18558000
pmcid: 2440763
doi: 10.1186/1471-2377-8-20
Shvartsman M, Kikkeri R, Shanzer A, Cabantchik ZI. Non-transferrin-bound iron reaches mitochondria by a chelator-inaccessible mechanism: biological and clinical implications. Am J Physiol Cell Physiol. 2007;293(4):C1383–94.
pubmed: 17670894
doi: 10.1152/ajpcell.00054.2007
Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, et al. Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J. 2014;28(5):2134–45.
pubmed: 24448823
doi: 10.1096/fj.13-240564
Lane DJ, Merlot AM, Huang ML, Bae DH, Jansson PJ, Sahni S, et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochem Biophys Acta. 2015;1853(5):1130–44.
pubmed: 25661197
doi: 10.1016/j.bbamcr.2015.01.021
Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol. 2009;29(4):1007–16.
pubmed: 19075006
doi: 10.1128/MCB.01685-08
Chen W, Paradkar PN, Li L, Pierce EL, Langer NB, Takahashi-Makise N, et al. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc Natl Acad Sci USA. 2009;106(38):16263–8.
pubmed: 19805291
pmcid: 2752562
doi: 10.1073/pnas.0904519106
Taketani S, Kakimoto K, Ueta H, Masaki R, Furukawa T. Involvement of ABC7 in the biosynthesis of heme in erythroid cells: interaction of ABC7 with ferrochelatase. Blood. 2003;101(8):3274–80.
pubmed: 12480705
doi: 10.1182/blood-2002-04-1212
Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, Mutharasan RK, et al. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci USA. 2012;109(11):4152–7.
pubmed: 22375032
pmcid: 3306722
doi: 10.1073/pnas.1119338109
Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig. 2014;124(2):617–30.
pubmed: 24382354
pmcid: 3904631
doi: 10.1172/JCI72931
Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro J, et al. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med. 2016;8.
Cloonan SM, Glass K, Laucho-Contreras ME, Bhashyam AR, Cervo M, Pabón MA, et al. Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in mice. Nat Med. 2016;22(2):163–74.
pubmed: 26752519
pmcid: 4742374
doi: 10.1038/nm.4021
Kohlhaas M, Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res. 2013;98(2):259–68.
pubmed: 23417042
doi: 10.1093/cvr/cvt032
Paterek A, Oknińska M, Chajduk E, Polkowska-Motrenko H, Mączewski M, Mackiewicz U. Systemic iron deficiency does not affect the cardiac iron content and progression of heart failure. J Mol Cell Cardiol. 2021;159:16–27.
pubmed: 34139233
doi: 10.1016/j.yjmcc.2021.06.005
Das SK, Wang W, Zhabyeyev P, Basu R, McLean B, Fan D, et al. Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy. Sci Rep. 2015;5:18132.
pubmed: 26638758
pmcid: 4671148
doi: 10.1038/srep18132
Chung YJ, Luo A, Park KC, Loonat AA, Lakhal-Littleton S, Robbins PA, et al. Iron-deficiency anemia reduces cardiac contraction by downregulating RyR2 channels and suppressing SERCA pump activity. JCI Insight. 2019;4(7). https://insight.jci.org/articles/view/125618
Crombie DE, Curl CL, Raaijmakers AJ, Sivakumaran P, Kulkarni T, Wong RC, et al. Friedreich’s ataxia induced pluripotent stem cell-derived cardiomyocytes display electrophysiological abnormalities and calcium handling deficiency. Aging. 2017;9(5):1440–52.
pubmed: 28562313
pmcid: 5472743
doi: 10.18632/aging.101247
von Hardenberg A, Maack C. Mitochondrial Therapies in Heart Failure. Handb Exp Pharmacol. 2017;243:491–514.
doi: 10.1007/164_2016_123
Chen Y, Li X, Wang S, Miao R, Zhong J. Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases. Nutrients. 2023;15(3). https://www.mdpi.com/2072-6643/15/3/591
Xu Y, Zhao J, Zhao Y, Zhou L, Qiao H, Xu Q, et al. The role of ferroptosis in neurodegenerative diseases. Mol Biol Rep. 2023;50(2):1655–61.
pubmed: 36385663
doi: 10.1007/s11033-022-08048-y
Chen X, Comish PB, Tang D, Kang R. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 2021;9:637162. https://doi.org/10.3389/fcell.2021.637162 , https://www.frontiersin.org/articles/10.3389/fcell.2021.637162/full
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82.
pubmed: 33495651
pmcid: 8142022
doi: 10.1038/s41580-020-00324-8
Janssen CIF, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res. 2014;53:1–17.
pubmed: 24334113
doi: 10.1016/j.plipres.2013.10.002
Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid–induced AKI. J Am Soc Nephrol. 2017;28(1):218–29.
pubmed: 27352622
doi: 10.1681/ASN.2015121376
Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 2008;8(3):237–48.
pubmed: 18762024
doi: 10.1016/j.cmet.2008.07.005
Sun L, Wang H, Yu S, Zhang L, Jiang J, Zhou Q. Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. Int J Mol Med. 2022;49(2). https://www.spandidos-publications.com/10.3892/ijmm.2021.5072/abstract
Angeli JPF, Shah R, Pratt DA, Conrad M. Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol Sci. 2017;38(5):489–98.
pubmed: 28363764
doi: 10.1016/j.tips.2017.02.005
Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478(3):1338–43.
pubmed: 27565726
doi: 10.1016/j.bbrc.2016.08.124
Rayatpour A, Foolad F, Heibatollahi M, Khajeh K, Javan M. Ferroptosis inhibition by deferiprone, attenuates myelin damage and promotes neuroprotection in demyelinated optic nerve. Sci Rep. 2022;12(1):19630.
pubmed: 36385152
pmcid: 9668997
doi: 10.1038/s41598-022-24152-2
Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC. Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Prog Neurobiol. 2021;196: 101890.
pubmed: 32726602
doi: 10.1016/j.pneurobio.2020.101890
Belmont A, Kwiatkowski JL. Deferiprone for the treatment of transfusional iron overload in thalassemia. Expert Rev Hematol. 2017;10(6):493–503.
pubmed: 28448199
doi: 10.1080/17474086.2017.1318052
Lupu M, Coada CA, Tudor D-V, Baldea I, Florea A, Toma V-A, et al. Iron chelation alleviates multiple pathophysiological pathways in a rat model of cardiac pressure overload. Free Radical Biol Med. 2023;200:1–10.
doi: 10.1016/j.freeradbiomed.2023.02.018
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci. 2019;116(7):2672–80.
pubmed: 30692261
pmcid: 6377499
doi: 10.1073/pnas.1821022116
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28: 101328.
pubmed: 31574461
doi: 10.1016/j.redox.2019.101328
Ni R, Cao T, Xiong S, Ma J, Fan G-C, Lacefield JC, et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radical Biol Med. 2016;90:12–23.
doi: 10.1016/j.freeradbiomed.2015.11.013
Gouni-Berthold I, Berthold HK, Huh JY, Berman R, Spenrath N, Krone W, et al. Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS ONE. 2013;8(9): e72858.
pubmed: 24023786
pmcid: 3759413
doi: 10.1371/journal.pone.0072858
Zhao Q, Kebbati AH, Zhang Y, Tang Y, Okello E, Huang C. Effect of coenzyme Q10 on the incidence of atrial fibrillation in patients with heart failure. J Investig Med. 2015;63(5):735–9.
pubmed: 25919281
doi: 10.1097/JIM.0000000000000202
Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart failure. 2014;2(6):641–9.
pubmed: 25282031
doi: 10.1016/j.jchf.2014.06.008
Di Lorenzo A, Iannuzzo G, Parlato A, Cuomo G, Testa C, Coppola M, et al. Clinical evidence for Q10 coenzyme supplementation in heart failure: from energetics to functional improvement. J Clin Med. 2020;9(5):1266. https://bibliotecadigital.uchile.cl/discovery/fulldisplay/cdi_doaj_primary_oai_doaj_org_article_09047766e74f45abafac5b7153864408/56UDC_INST:56UDC_INST
Okello E, Jiang X, Mohamed S, Zhao Q, Wang T. Combined statin/coenzyme Q10 as adjunctive treatment of chronic heart failure. Med Hypotheses. 2009;73(3):306–8.
pubmed: 19409711
doi: 10.1016/j.mehy.2009.03.027
Liu B, Zhao C, Li H, Chen X, Ding Y, Xu S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun. 2018;497(1):233–40.
pubmed: 29427658
doi: 10.1016/j.bbrc.2018.02.061
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.
pubmed: 31634899
doi: 10.1038/s41586-019-1707-0
Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun. 2020;523(4):966–71.
pubmed: 31964528
doi: 10.1016/j.bbrc.2020.01.066
Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 2018;9:1371.
pubmed: 30524291
pmcid: 6262051
doi: 10.3389/fphar.2018.01371
Dai E, Meng L, Kang R, Wang X, Tang D. ESCRT-III–dependent membrane repair blocks ferroptosis. Biochem Biophys Res Commun. 2020;522(2):415–21.
pubmed: 31761326
doi: 10.1016/j.bbrc.2019.11.110
Xie LH, Fefelova N, Pamarthi SH, Gwathmey JK. Molecular mechanisms of ferroptosis and relevance to cardiovascular disease. Cells. 2022;11(17):2726. https://www.mdpi.com/2073-4409/11/17/2726
Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;22(2):225–34.
pubmed: 32029897
pmcid: 7008777
doi: 10.1038/s41556-020-0461-8
Sumneang N, Siri-Angkul N, Kumfu S, Chattipakorn SC, Chattipakorn N. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch Biochem Biophys. 2020;680: 108241.
pubmed: 31891670
doi: 10.1016/j.abb.2019.108241
Tang WH, Tong W, Jain A, Francis GS, Harris CM, Young JB. Evaluation and long-term prognosis of new-onset, transient, and persistent anemia in ambulatory patients with chronic heart failure. J Am Coll Cardiol. 2008;51(5):569–76.
pubmed: 18237687
doi: 10.1016/j.jacc.2007.07.094
Martens P, Claessen G, Van De Bruaene A, Verbrugge FH, Herbots L, Dendale P, et al. Iron deficiency is associated with impaired biventricular reserve and reduced exercise capacity in patients with unexplained dyspnea. J Cardiac Fail. 2021;27(7):766–76.
doi: 10.1016/j.cardfail.2021.03.010
Lewis GD, Malhotra R, Hernandez AF, McNulty SE, Smith A, Felker GM, et al. Effect of oral iron repletion on exercise capacity in patients with heart failure with reduced ejection fraction and iron deficiency: the IRONOUT HF randomized clinical trial. JAMA. 2017;317(19):1958–66.
pubmed: 28510680
pmcid: 5703044
doi: 10.1001/jama.2017.5427
Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48.
pubmed: 19920054
doi: 10.1056/NEJMoa0908355
Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency†. Eur Heart J. 2014;36(11):657–68.
pubmed: 25176939
pmcid: 4359359
doi: 10.1093/eurheartj/ehu385
Ponikowski P, Kirwan B-A, Anker SD, McDonagh T, Dorobantu M, Drozdz J, et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. The Lancet. 2020;396(10266):1895–904.
doi: 10.1016/S0140-6736(20)32339-4
López-Vilella R, Lozano-Edo S, Arenas Martín P, Jover-Pastor P, Ezzitouny M, Sorolla Romero J, et al. Impact of intravenous ferric carboxymaltose on heart failure with preserved and reduced ejection fraction. ESC Heart Fail. 2022;9(1):133–45.
pubmed: 34964300
doi: 10.1002/ehf2.13753
Mollace A, Macrì R, Mollace R, Tavernese A, Gliozzi M, Musolino V, et al. Effect of ferric carboxymaltose supplementation in patients with heart failure with preserved ejection fraction: role of attenuated oxidative stress and improved endothelial function. Nutrients. 2022;14(23):5057. https://www.mdpi.com/2072-6643/14/23/5057
Santas E, Miñana G, Cardells I, Palau P, Llàcer P, Fácila L, et al. Short-term changes in left and right systolic function following ferric carboxymaltose: a substudy of the Myocardial-IRON trial. ESC Heart Fail. 2020;7(6):4222–30.
pubmed: 33040491
pmcid: 7754736
doi: 10.1002/ehf2.13053
Gaber R, Kotb NA, Ghazy M, Nagy HM, Salama M, Elhendy A. Tissue Doppler and strain rate imaging detect improvement of myocardial function in iron deficient patients with congestive heart failure after iron replacement therapy. Echocardiography (Mount Kisco, NY). 2012;29(1):13–8.
doi: 10.1111/j.1540-8175.2011.01532.x
Salah HM, Savarese G, Rosano GMC, Ambrosy AP, Mentz RJ, Fudim M. Intravenous iron infusion in patients with heart failure: a systematic review and study-level meta-analysis. ESC Heart Fail. 2023.
Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail. 2016;18(7):762–73.
pubmed: 26800032
doi: 10.1002/ejhf.467
Caravita S, Faini A, Vignati C, Pelucchi S, Salvioni E, Cattadori G, et al. Intravenous iron therapy improves the hypercapnic ventilatory response and sleep disordered breathing in chronic heart failure. Eur J Heart Fail. 2022;24(10):1940–9.
pubmed: 35867685
doi: 10.1002/ejhf.2628
Tkaczyszyn M, Drozd M, Węgrzynowska-Teodorczyk K, Bojarczuk J, Majda J, Banasiak W, et al. Iron status, catabolic/anabolic balance, and skeletal muscle performance in men with heart failure with reduced ejection fraction. Cardiol J. 2021;28(3):391–401.
pubmed: 33140393
pmcid: 8169180
doi: 10.5603/CJ.a2020.0138
Mentz RJ, Garg J, Rockhold FW, Butler J, De Pasquale CG, Ezekowitz JA, et al. Ferric carboxymaltose in heart failure with iron deficiency. N Engl J Med. 2023;389(11):975–86.
pubmed: 37632463
doi: 10.1056/NEJMoa2304968
Kalra PR, Cleland JGF, Petrie MC, Thomson EA, Kalra PA, Squire IB, et al. Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet (London, England). 2023;400(10369):2199–209.
doi: 10.1016/S0140-6736(22)02083-9
Martens P, Dupont M, Dauw J, Nijst P, Herbots L, Dendale P, et al. The effect of intravenous ferric carboxymaltose on cardiac reverse remodelling following cardiac resynchronization therapy-the IRON-CRT trial. Eur Heart J. 2021;42(48):4905–14.
pubmed: 34185066
pmcid: 8691806
doi: 10.1093/eurheartj/ehab411
Martens P, Dupont M, Dauw J, Nijst P, Bertrand PB, Tang WHW, et al. The effect of intravenous ferric carboxymaltose on right ventricular function—insights from the IRON-CRT trial. Eur J Heart Fail. 2022;24(6):1106–13.
pubmed: 35303390
doi: 10.1002/ejhf.2489
Toblli JE, Di Gennaro F, Rivas C. Changes in echocardiographic parameters in iron deficiency patients with heart failure and chronic kidney disease treated with intravenous iron. Heart Lung Circ. 2015;24(7):686–95.
pubmed: 25666998
doi: 10.1016/j.hlc.2014.12.161
Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res/Fund Mol Mech Mutagen. 2003;531(1):81–92.
doi: 10.1016/j.mrfmmm.2003.08.004
Shah AA, Donovan K, Seeley C, Dickson EA, Palmer AJR, Doree C, et al. Risk of infection associated with administration of intravenous iron: a systematic review and meta-analysis. JAMA Netw Open. 2021;4(11): e2133935-e.
doi: 10.1001/jamanetworkopen.2021.33935
Adkinson NF, Strauss WE, Macdougall IC, Bernard KE, Auerbach M, Kaper RF, et al. Comparative safety of intravenous ferumoxytol versus ferric carboxymaltose in iron deficiency anemia: a randomized trial. Am J Hematol. 2018;93(5):683–90.
pubmed: 29417614
pmcid: 5947731
doi: 10.1002/ajh.25060
Wolf M, Chertow GM, Macdougall IC, Kaper R, Krop J, Strauss W. Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight. 2018;3(23).
Garbowski MW, Bansal S, Porter JB, Mori C, Burckhardt S, Hider RC. Intravenous iron preparations transiently generate non-transferrin-bound iron from two proposed pathways. Haematologica. 2021;106(11):2885. https://www.haematologica.org/article/view/haematol.2020.250803
pubmed: 33054113
doi: 10.3324/haematol.2020.250803
Wolf M, Rubin J, Achebe M, Econs MJ, Peacock M, Imel EA, et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia: two randomized clinical trials. JAMA. 2020;323(5):432–43.
pubmed: 32016310
pmcid: 7042864
doi: 10.1001/jama.2019.22450
Pepe A, Meloni A, Capra M, Cianciulli P, Prossomariti L, Malaventura C, et al. Deferasirox, deferiprone and desferrioxamine treatment in thalassemia major patients: cardiac iron and function comparison determined by quantitative magnetic resonance imaging. Haematologica. 2011;96(1):41–7.
pubmed: 20884710
doi: 10.3324/haematol.2009.019042
Tanner MA, Galanello R, Dessi C, Smith GC, Westwood MA, Agus A, et al. A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation. 2007;115(14):1876–84.
pubmed: 17372174
doi: 10.1161/CIRCULATIONAHA.106.648790
Pandolfo M, Hausmann L. Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem. 2013;126:142–6.
pubmed: 23859349
doi: 10.1111/jnc.12300
Mleczko-Sanecka K, da Silva AR, Call D, Neves J, Schmeer N, Damm G, et al. Imatinib and spironolactone suppress hepcidin expression. Haematologica. 2017;102(7):1173–84.
pubmed: 28385785
pmcid: 5566021
doi: 10.3324/haematol.2016.162917
Omiya S, Hikoso S, Imanishi Y, Saito A, Yamaguchi O, Takeda T, et al. Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J Mol Cell Cardiol. 2009;46(1):59–66.
pubmed: 18992754
doi: 10.1016/j.yjmcc.2008.09.714
Graham FJ, Pellicori P, Kalra PR, Ford I, Bruzzese D, Cleland JGF. Intravenous iron in patients with heart failure and iron deficiency: an updated meta-analysis. Eur J Heart Fail. 2023;25(4):528–37.
pubmed: 36823953
doi: 10.1002/ejhf.2810
Masini G, Graham FJ, Pellicori P, Cleland JGF, Cuthbert JJ, Kazmi S, et al. Criteria for iron deficiency in patients with heart failure. J Am Coll Cardiol. 2022;79(4):341–51.
pubmed: 35086656
doi: 10.1016/j.jacc.2021.11.039
Nagao M, Matsuo Y, Kamitani T, Yonezawa M, Yamasaki Y, Kawanami S, et al. Quantification of myocardial iron deficiency in nonischemic heart failure by cardiac T2* magnetic resonance imaging. Am J Cardiol. 2014;113(6):1024–30.
pubmed: 24461766
doi: 10.1016/j.amjcard.2013.11.061
Carpenter J-P, He T, Kirk P, Roughton M, Anderson LJ, Noronha SVd, et al. On T2* magnetic resonance and cardiac iron. Circulation. 2011;123(14):1519–28.
pubmed: 21444881
pmcid: 3435874
doi: 10.1161/CIRCULATIONAHA.110.007641
Ghafourian K, Shapiro JS, Goodman L, Ardehali H. Iron and Heart Failure. JACC Basic Transl Sci. 2020;5(3):300–13.
pubmed: 32215351
pmcid: 7091506
doi: 10.1016/j.jacbts.2019.08.009
Behrouzi B, Weyers JJ, Qi X, Barry J, Rabadia V, Manca D, et al. Action of iron chelator on intramyocardial hemorrhage and cardiac remodeling following acute myocardial infarction. Basic Res Cardiol. 2020;115(3):24.
pubmed: 32140789
doi: 10.1007/s00395-020-0782-6
Chung B, Wang Y, Thiel M, Rostami F, Rogoll A, Hirsch VG, et al. Pre-emptive iron supplementation prevents myocardial iron deficiency and attenuates adverse remodelling after myocardial infarction. Cardiovasc Res. 2023;119(10):1969–80.
pubmed: 37315201
doi: 10.1093/cvr/cvad092
Wongjaikam S, Kumfu S, Khamseekaew J, Chattipakorn SC, Chattipakorn N. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine. Sci Rep. 2017;7(1):1–12.
doi: 10.1038/srep44460
Wongjaikam S, Kumfu S, Khamseekaew J, Sripetchwandee J, Srichairatanakool S, Fucharoen S, et al. Combined iron chelator and antioxidant exerted greater efficacy on cardioprotection than monotherapy in iron-overloaded rats. PLoS ONE. 2016;11(7): e0159414.
pubmed: 27428732
pmcid: 4948821
doi: 10.1371/journal.pone.0159414
Tajes M, Díez-López C, Enjuanes C, Moliner P, Ferreiro JL, Garay A, et al. Neurohormonal activation induces intracellular iron deficiency and mitochondrial dysfunction in cardiac cells. Cell Biosci. 2021;11(1):89.
pubmed: 34001233
pmcid: 8130332
doi: 10.1186/s13578-021-00605-5
Díez-López C, Tajes Orduña M, Enjuanes Grau C, Moliner Borja P, González-Costello J, García-Romero E, et al. Blood differential gene expression in patients with chronic heart failure and systemic iron deficiency: pathways involved in pathophysiology and impact on clinical outcomes. J Clin Med. 2021;10(21):4937.
pubmed: 34768457
pmcid: 8585093
doi: 10.3390/jcm10214937
Zhang H, Jamieson KL, Grenier J, Nikhanj A, Tang Z, Wang F, et al. Myocardial iron deficiency and mitochondrial dysfunction in advanced heart failure in humans. J Am Heart Assoc. 2022;11(11): e022853.
pubmed: 35656974
pmcid: 9238720
doi: 10.1161/JAHA.121.022853
Bhandari S. Impact of intravenous iron on cardiac and skeletal oxidative stress and cardiac mitochondrial function in experimental uraemia chronic kidney disease. Front Biosci (Landmark edition). 2021;26(9):442–64.
doi: 10.52586/4958