Shift in the rhizosphere soil fungal community associated with root rot infection of Plukenetia volubilis Linneo caused by Fusarium and Rhizopus species.
Fusarium spp.
Plukenetia volubilis Linneo
Rhizopus spp.
Rhizosphere fungal community
Root rot
Journal
International microbiology : the official journal of the Spanish Society for Microbiology
ISSN: 1618-1905
Titre abrégé: Int Microbiol
Pays: Switzerland
ID NLM: 9816585
Informations de publication
Date de publication:
29 Dec 2023
29 Dec 2023
Historique:
received:
12
10
2023
accepted:
08
12
2023
revised:
14
11
2023
medline:
2
1
2024
pubmed:
2
1
2024
entrez:
29
12
2023
Statut:
aheadofprint
Résumé
Plukenetia volubilis Linneo is an oleaginous plant belonging to the family Euphorbiaceae. Due to its seeds containing a high content of edible oil and rich in vitamins, P. volubilis is cultivated as an economical plant worldwide. However, the cultivation and growth of P. volubilis is challenged by phytopathogen invasion leading to production loss. In the current study, we tested the pathogenicity of fungal pathogens isolated from root rot infected P. volubilis plant tissues by inoculating them into healthy P. volubilis seedlings. Metagenomic sequencing was used to assess the shift in the fungal community of P. volubilis rhizosphere soil after root rot infection. Four Fusarium isolates and two Rhizopus isolates were found to be root rot causative agents of P. volubilis as they induced typical root rot symptoms in healthy seedlings. The metagenomic sequencing data showed that root rot infection altered the rhizosphere fungal community. In root rot infected soil, the richness and diversity indices increased or decreased depending on pathogens. The four most abundant phyla across all samples were Ascomycota, Glomeromycota, Basidiomycota, and Mortierellomycota. In infected soil, the relative abundance of each phylum increased or decreased depending on the pathogen and functional taxonomic classification. Based on our results, we concluded that Fusarium and Rhizopus species cause root rot infection of P. volubilis. In root rot infected P. volubilis, the shift in the rhizosphere fungal community was pathogen-dependent. These findings may serve as a key point for a future study on the biocontrol of root rot of P. volubilis.
Sections du résumé
BACKGROUND
BACKGROUND
Plukenetia volubilis Linneo is an oleaginous plant belonging to the family Euphorbiaceae. Due to its seeds containing a high content of edible oil and rich in vitamins, P. volubilis is cultivated as an economical plant worldwide. However, the cultivation and growth of P. volubilis is challenged by phytopathogen invasion leading to production loss.
METHODS
METHODS
In the current study, we tested the pathogenicity of fungal pathogens isolated from root rot infected P. volubilis plant tissues by inoculating them into healthy P. volubilis seedlings. Metagenomic sequencing was used to assess the shift in the fungal community of P. volubilis rhizosphere soil after root rot infection.
RESULTS
RESULTS
Four Fusarium isolates and two Rhizopus isolates were found to be root rot causative agents of P. volubilis as they induced typical root rot symptoms in healthy seedlings. The metagenomic sequencing data showed that root rot infection altered the rhizosphere fungal community. In root rot infected soil, the richness and diversity indices increased or decreased depending on pathogens. The four most abundant phyla across all samples were Ascomycota, Glomeromycota, Basidiomycota, and Mortierellomycota. In infected soil, the relative abundance of each phylum increased or decreased depending on the pathogen and functional taxonomic classification.
CONCLUSIONS
CONCLUSIONS
Based on our results, we concluded that Fusarium and Rhizopus species cause root rot infection of P. volubilis. In root rot infected P. volubilis, the shift in the rhizosphere fungal community was pathogen-dependent. These findings may serve as a key point for a future study on the biocontrol of root rot of P. volubilis.
Identifiants
pubmed: 38158469
doi: 10.1007/s10123-023-00470-x
pii: 10.1007/s10123-023-00470-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Al-Dhabaan FA (2018) First record of Rhizopus oryzae from stored apple fruits in Saudi Arabia. Plant Pathol Quar8:116–121. https://doi.org/10.5943/PPQ/8/2/2
Ao J, Wang Z, Yang Q, Li B, Li Y, Li Y (2022) Differentially enriched fungal communities in root rot resistant and susceptible varieties of tobacco (Nicotiana tabacum L.) under continuous monoculture cropping. Front Microbiol 13:1036091. https://doi.org/10.3389/fmicb.2022.1036091
doi: 10.3389/fmicb.2022.1036091
pubmed: 36569055
pmcid: 9768445
Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phyto-pathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80:189–201. https://doi.org/10.1007/s10327-014-0509-3
doi: 10.1007/s10327-014-0509-3
Arafat Y, Tayyab M, Khan MU, Chen T, Amjad H, Awais S, Lin W, Lin S (2019) Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards. Agron 9:466. https://doi.org/10.3390/agronomy9080466
doi: 10.3390/agronomy9080466
Araujo R, Dunlap C, Franco CMM (2020) Analogous wheat root rhizosphere microbial successions in field and greenhouse trials in the presence of biocontrol agents Paenibacilluspeoriae SP9 and Streptomyces fulvissimus FU14. Mol Plant 21:622–635. https://doi.org/10.1111/mpp.12918
doi: 10.1111/mpp.12918
Arias MM, Leandro LF, Munkvold GP (2013) Aggressiveness of species and impact of root infection on growth and yield of soybeans. Phytopathology 103:822–832. https://doi.org/10.1094/PHYTO-08-12-0207-R
doi: 10.1094/PHYTO-08-12-0207-R
pubmed: 23514263
Bakker P, Pieterse CMJ, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell 172:1178–1180. https://doi.org/10.1016/j.cell.2018.02.024
doi: 10.1016/j.cell.2018.02.024
pubmed: 29522740
Banos S, Lentendu G, Kopf A, Wubet T, Glöckner FO, Reich M (2018) A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol 18:190. https://doi.org/10.1186/s12866-018-1331-4
doi: 10.1186/s12866-018-1331-4
pubmed: 30458701
pmcid: 6247509
Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001
doi: 10.1016/j.tplants.2012.04.001
pubmed: 22564542
Bilgi VN, Bradley CA, Mathew FM, Ali S, Rasmussen JB (2011) Root rot of dry edible bean caused by Fusarium graminearum. Plant Health Prog 12:14. https://doi.org/10.1094/PHP-2011-0425-01-RS
doi: 10.1094/PHP-2011-0425-01-RS
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10:57–59. https://doi.org/10.1038/nmeth.2276
doi: 10.1038/nmeth.2276
pubmed: 23202435
Câmara MP, Ramaley AW, Castlebury LA, Palm ME (2003) Neophaeosphaeria and Phaeosphaeriopsis segregates of Paraphaeosphaeria. Mycol Res 107:516–522. https://doi.org/10.1017/S0953756203007731
doi: 10.1017/S0953756203007731
pubmed: 12884947
Canini F, ZucconiL PC, Selbmann L, Onofri S, Geml J (2019) Vegetation, pH and water content as main factors for shaping fungal richness, community composition and functional guilds distribution in soils of Western Greenland. Front Microbiol 10:2348. https://doi.org/10.3389/fmicb.2019.02348
doi: 10.3389/fmicb.2019.02348
pubmed: 31681213
pmcid: 6797927
Chai X, Yang Z, Fu Q, Pan BZ, Tang M, Li C, Xu ZF (2018) First report of root and basal stem rot in Sacha Inchi (Plukenetia volubilis) caused by Fusarium oxysporum in China. Plant Dis 102:242–242. https://doi.org/10.1094/PDIS-06-17-0784-PDN
doi: 10.1094/PDIS-06-17-0784-PDN
Champeil A, Dore T, Fourbet JF (2004) Fusarium head blight: epide-miological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci 166:1389–1415. https://doi.org/10.1016/j.plantsci.2004.02.004
doi: 10.1016/j.plantsci.2004.02.004
Chang KF, Hwang SF, Conner RL, Ahmed HU, Zhou Q, Turnbull GD, Strelkov SE, McLaren DL, Gossen BD (2015) First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop Prot 67:52–58. https://doi.org/10.1016/j.cropro.2014.09.020
doi: 10.1016/j.cropro.2014.09.020
Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10:265–268. https://doi.org/10.1038/ismej.2015.82
doi: 10.1038/ismej.2015.82
pubmed: 26023875
Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9:3429. https://doi.org/10.1038/s41467-018-05683-7
doi: 10.1038/s41467-018-05683-7
pubmed: 30143616
pmcid: 6109063
Chirinos R, Zuloeta G, Pedreschi R, Mignolet E, Larondelle Y, Campos D (2013) Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem 141:1732–1739. https://doi.org/10.1016/j.foodchem.2013.04.078
doi: 10.1016/j.foodchem.2013.04.078
pubmed: 23870885
Coleman JJ (2015) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Path 17:146–158. https://doi.org/10.1111/mpp.12289
doi: 10.1111/mpp.12289
Dai X, Li X, Yang B, Guo C, Jiang C, Niu D (2023) First report of leaf rot on lonicera japonica caused by rhizopus arrhizus in China. Plant Dis 107:9. https://doi.org/10.1094/PDIS-05-23-0964-PDN
doi: 10.1094/PDIS-05-23-0964-PDN
Del Barrio-Duque A, Ley J, Samad A, Antonielli L, Sessitsch A, Compant S (2019) Beneficial endophytic bacteria-serendipita indica interaction for crop enhancement and resistance to phytopathogens. Front Microbiol 10:2888. https://doi.org/10.3389/fmicb.2019.02888
doi: 10.3389/fmicb.2019.02888
pubmed: 31921065
pmcid: 6930893
Diaz Arias MM, Munkvold GP, Leandro LF (2011) First report of Fusarium proliferatum causing root rot on soybean (Glycine max) in the United States. Plant Dis:951316. https://doi.org/10.1094/PDIS-04-11-0346
Fernandez-Gonzalez AJ, Cardoni M, Gomez-Lama Cabanas C, ValverdeCorredor A, Villadas PJ, Fernandez-Lopez M, Mercado-Blanco J (2020) Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome 8:11. https://doi.org/10.1186/s40168-020-0787-2
doi: 10.1186/s40168-020-0787-2
pubmed: 32007096
pmcid: 6995654
Gao Z, Han M, Hu Y, Li Z, Liu C, Wang X, Tian Q, Jiao W, Hu J, Liu L, Guan Z, Ma Z (2019) Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front in Microbiol 10:2269. https://doi.org/10.3389/fmicb.2019.02269
doi: 10.3389/fmicb.2019.02269
Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
doi: 10.1146/annurev.phyto.42.012604.135455
pubmed: 15283667
Garmendia F, Pando R, Ronceros G (2011) Effect of sacha inchi oil (Plukenetia volúbilis l) on the lipid profile of patients with hyperlipoproteinemia. Rev Peru Med Exp Salud Publica 28:628–632
Gnanesh BN, Tejaswi A, Arunakumar GS, Supriya M, Manojkumar HB, Tewary P (2020) Molecular phylogeny, identification and pathogenicity of Rhizopus oryzae associated with root rot of mulberry in India. J Appl Microbiol 131:360–374. https://doi.org/10.1111/jam.14959
doi: 10.1111/jam.14959
pubmed: 33277790
Gutiérrez LF, Rosada L, Jiménez Á (2011) Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas Y Aceites 62:76–83
doi: 10.3989/gya044510
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98
Han L, Wang Z, Li N, Wang Y, Feng J, Zhang X (2019) Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. App Soil Ecol 136:55–66. https://doi.org/10.1016/j.apsoil.2018.12.011
doi: 10.1016/j.apsoil.2018.12.011
He MQ, Zhao RL (2021) Outline of basidiomycota. Encyclopedia of. Mycology 1:310–319. https://doi.org/10.1016/B978-0-12-819990-9.00065-2
doi: 10.1016/B978-0-12-819990-9.00065-2
Hibar K, Gamaoun W, Trik MA (2017) Isolation, identification and biological control of the major pathogens causing root rot and wilt diseases of young olive trees in Tunisia. Agri Bio Tech 39:2121–2130
Hong C, Si Y, Xing Y, Li Y (2015) Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ Sci Pollut Res 22:10788–10799. https://doi.org/10.1007/s11356-015-4186-3
doi: 10.1007/s11356-015-4186-3
Hong S, Yuan X, Yang J, Yang Y, Jv H, Li R, Jia Z, Ruan Y (2023) Selection of rhizosphere communities of diverse rotation crops reveals unique core microbiome associated with reduced banana Fusarium wilt disease. New Phytol 238:2194–2209. https://doi.org/10.1111/nph.18816
doi: 10.1111/nph.18816
pubmed: 36797661
Hossain Z, Hubbard M, Gan Y, Bainard LD (2021) Root rot alters the root-associated microbiome of field pea in commercial crop production systems. Plant Soil 460:593–607. https://doi.org/10.1007/s11104-020-04779-8
doi: 10.1007/s11104-020-04779-8
Huang X, Yan X, Tang Y, Yuan X (2022) Evaluating the impact of Trichoderma brevicompactum 31636 on Root Rot of Atractylodes macrocephala and the fungal community in the rhizosphere soil. CCMP 2:100025. https://doi.org/10.1016/j.ccmp.2022.100025
doi: 10.1016/j.ccmp.2022.100025
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:7113. https://doi.org/10.1038/nature05110
doi: 10.1038/nature05110
Ji P, Yin J, Jackson KL (2012) First report of root rot caused by Fusarium solani on Benincasa hispida in the United States. Plant Dis 96294. https://doi.org/10.1094/PDIS-06-11-0494
Jiang J, Yu M, Hou R, Li L, Ren X, Jiao C, Yang L, Xu H (2019) Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant Soil 438:143–156. https://doi.org/10.1007/s11104-018-03928-4
doi: 10.1007/s11104-018-03928-4
Kang IJ, Shim HK, Heu S, Kim KS (2019) First report of soybean root and stem rot caused by Fusarium graminearum in South Korea. Plant Dis 104:56810. https://doi.org/10.1094/pdis-07-19-1504-pdn
doi: 10.1094/pdis-07-19-1504-pdn
Khokhar I, Wang J, Jia Y, Yan Y (2019) First report of rhizopus soft rot on Tomato (Lycopersicon esculentum) Caused by Rhizopus oryzae in China. Plant Dis 103:1041–1041. https://doi.org/10.1094/PDIS-10-18-1848-PDN
doi: 10.1094/PDIS-10-18-1848-PDN
Kodahl N, Sørensen M (2021) M. Sacha Inchi (Plukenetia volubilis L.) - an underutilized crop with a great potential. Agron 11:1066. https://doi.org/10.3390/agronomy11061066
doi: 10.3390/agronomy11061066
Korenblum E, Dong Y, Szymanski J, Panda S, Jozwiak A, Massalha Meira S, Rogacheva I, Aharonia A (2020) Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci USA 117:3874–3883. https://doi.org/10.1073/pnas.1912130117
doi: 10.1073/pnas.1912130117
pubmed: 32015118
pmcid: 7035606
Kwon JH, Kim J, Kim WI (2011) First report of Rhizopus oryzae as a postharvest pathogen of apple in Korea. Mycobiology 39:140–142
doi: 10.4489/MYCO.2011.39.2.140
pubmed: 22783094
pmcid: 3385096
Li BJ, Guo MY, Chai AL (2015) First Report of Fusarium solani causing Fusarium root rot on Okra (Abelmoschus esculentus) in China. Plant Dis 100:526–527. https://doi.org/10.1094/PDIS-05-15-0588-PDN
doi: 10.1094/PDIS-05-15-0588-PDN
Li Q, Liao S, Wei J, Xing D, Xiao Y, Yang Q (2020) Isolation of Bacillus subtilis strain SEM-2 from silkworm excrement and characterization of its antagonistic effect against Fusarium spp. Can J Microbiol 66:401–412. https://doi.org/10.1139/cjm-2019-0621
doi: 10.1139/cjm-2019-0621
pubmed: 32160477
Li Y, Chen K, Liu S, Liang X, Wang Y, Zhou X, Yin Y, Cao Y, An W, Qin K, Sun Y (2022) Diversity and spatiotemporal dynamics of fungal communities in the rhizosphere soil of Lycium barbarum L.: a new insight into the mechanism of geoherb formation. Arch Microbiol 204:197. https://doi.org/10.1007/s00203-022-02781-5
doi: 10.1007/s00203-022-02781-5
pubmed: 35217917
pmcid: 8881256
Liang T, Yang G, Ma Y, Yao Q, Ma Y, Ma H, Hu Y, Yang Y, Wang S, Pan Y, Li G (2019) Seasonal dynamics of microbial diversity in the rhizosphere of Ulmus pumila L. var. sabulosa in a steppe desert area of Northern China. PeerJ 7:e7526
doi: 10.7717/peerj.7526
pubmed: 31497396
pmcid: 6708578
Liu G, Wu Z, Peng SX, Xie Y, Arnold JR (2020) Transcriptome analyses reveals the dynamic nature of oil accumulation during seed development of Plukenetia volubilis L. Sci Rep 10:2046. https://doi.org/10.1038/s41598-020-77177-w
doi: 10.1038/s41598-020-77177-w
Lock O, Perez E, Villar M, Flores D, Rojas R (2016) Bioactive compounds from plants used in Peruvian traditional medicine. Nat Prod Commun 11:315–337
pubmed: 27169179
Lu Y, Chen J, Zheng J, Hu G, Wang J, Huang C, Lou L, Wang X, Zeng Y (2016) Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep 6:26337. https://doi.org/10.1038/srep26337
doi: 10.1038/srep26337
pubmed: 27194068
pmcid: 4872055
Melo MP, Beserra JEA Jr, Matos KS, Lima CS, Pereira OL (2016) First report of a new lineage in the Fusarium solani species complex causing root rot on Sunn Hemp in Brazil. Plant Dis 100:8. https://doi.org/10.1094/PDIS-08-15-0947-PDN
doi: 10.1094/PDIS-08-15-0947-PDN
Nascimento AK, Melo-Silveira RF, Dantas-Santos N, Fernandes JM, Zucolotto SM, Rocha HA, Scortecci KC (2013) Antioxidant and antiproliferative activities of leaf extracts from Plukenetia volubilis Linneo (Euphorbiaceae). Evid Based Complement Alternat Med 2013:950272. https://doi.org/10.1155/2013/950272
doi: 10.1155/2013/950272
pubmed: 24159355
pmcid: 3789487
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2015) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006
doi: 10.1016/j.funeco.2015.06.006
Norhazlindah MF, Jahurul MHA, Norliza1 M, Shihabu A, Shahidul I, Nyam KL, Zaidu ISM (2022) Techniques for extraction, characterization, and application of oil from sacha inchi (Plukenetia volubilis L.) seed: a review. J Food Meas Charact 17: 904–915. https://doi.org/10.1007/s11694-022-01663-0
Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals: a review. Plant Pathol 44:207–238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
doi: 10.1111/j.1365-3059.1995.tb02773.x
Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741. https://doi.org/10.3389/fpls.2019.01741
doi: 10.3389/fpls.2019.01741
pubmed: 32038698
pmcid: 6992662
Pastrana AM, Capote N, De los Santos B, Romero F, Basallote-Ureba MJ (2013) First report of Fusarium solani causing crown and root rot on strawberry crops in Southwestern Spain. Plant Dis 98:161. https://doi.org/10.1094/PDIS-07-13-0682-PDN
doi: 10.1094/PDIS-07-13-0682-PDN
Perez BA, Farinon OM, Berretta MF (2011) First report of Fusarium solani causing root rot of olive in Southeastern Argentina. Plant Dis 95:1476. https://doi.org/10.1094/PDIS-02-11-0095
doi: 10.1094/PDIS-02-11-0095
pubmed: 30731774
Raaijmakers JM, Timothy CP, Christian S, Claude A, Yvan ML (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. https://doi.org/10.1007/s11104-008-9568-6
doi: 10.1007/s11104-008-9568-6
Saleem M, Hu J, Jousset A (2019) More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst 50:145–168. https://doi.org/10.1146/annurev-ecolsys-110617-062605
doi: 10.1146/annurev-ecolsys-110617-062605
Shanmugam SG, Kingery WL (2018) Changes in soil microbial community structure in relation to plant succession and soil properties during 4000 years of pedogenesis. Eur J Soil Biol 88:80–88. https://doi.org/10.1016/j.ejsobi.2018.07.003
doi: 10.1016/j.ejsobi.2018.07.003
Shen Z, Ruan Y, Chao X, Zhang J, Li R, Shen Q (2015) Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol Fertil Soils 51:553–56210. https://doi.org/10.1007/s00374-015-1002-7
doi: 10.1007/s00374-015-1002-7
Solís-García IA, Ceballos-Luna O, Cortazar-Murillo EM, Desgarennes D, Garay-Serrano E, Patiño-Conde V, Guevara-Avendaño E, Méndez-Bravo A, Reverchon F (2021) Phytophthora root rot modifies the composition of the avocado rhizosphere microbiome and increases the abundance of opportunistic fungal pathogens. Front. Microbiol 11:574110. https://doi.org/10.3389/fmicb.2020.574110
doi: 10.3389/fmicb.2020.574110
pubmed: 33510714
pmcid: 7835518
Sprague SJ, Watt M, Kirkegaard JA, Howlett BJ (2007) Pathways of infection of Brassica napusroots by Leptosphaeria maculans. New Phyto l176:211–222. https://doi.org/10.1111/j.1469-8137.2007.02156.x
doi: 10.1111/j.1469-8137.2007.02156.x
Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA Polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS One 9:e107783. https://doi.org/10.1371/journal.pone.0107783
doi: 10.1371/journal.pone.0107783
pubmed: 25275381
pmcid: 4183475
Sun S, Lui Q, Han L, Ma Q, He S, Li X, Zhang H, Zhang J, Liu X, Wang L (2018) Identification and characterization of Fusarium proliferatum, a new species of fungi that cause fungal keratitis. Sci Rep 8:4859. https://doi.org/10.1038/s41598-018-23255-z
doi: 10.1038/s41598-018-23255-z
pubmed: 29559666
pmcid: 5861105
Taylor TN, Krings M, Taylor EL (2015) Glomeromycota. Fossil Fungi 103–128. https://doi.org/10.1016/b978-0-12-387731-4.00007-4
Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159. https://doi.org/10.1007/s13225-018-0401-0
doi: 10.1007/s13225-018-0401-0
Tran PNT, Tran TTN (2021) Evaluation of acute and subchronic toxicity induced by the crude ethanol extract of Plukenetia volubilis Linneo leaves in Swiss Albino Mice. Biomed Res Int 2021:13. https://doi.org/10.1155/2021/6524658
doi: 10.1155/2021/6524658
Uwaremwe C, Yue L, Liu Y, Tian Y, Zhao X, Wang Y, Xie Z, Zhang Y, Cui Z, Wang R (2021) Molecular identification and pathogenicity of Fusarium and Alternaria species associated with root rot disease of wolfberry in Gansu and Ningxia provinces, China. Plant Pathol 70:397–406. https://doi.org/10.1111/ppa.13285
doi: 10.1111/ppa.13285
Uwaremwe C, Yue L, Wang Y, Tian Y, Zhao X, Liu Y, Zhou Q, Zhang Y, Wang R (2022) An endophytic strain of Bacillus amyloliquefaciens suppresses Fusarium oxysporum infection of Chinese wolfberry by altering its rhizosphere bacterial community. Front Microbiol 12:782523. https://doi.org/10.3389/fmicb.2021.782523
doi: 10.3389/fmicb.2021.782523
pubmed: 35069484
pmcid: 8767019
Vilela LAF (2021) Molecular and cellular changes of arbuscular mycorrhizal fungi-plant interaction in cadmium contamination, vol 277–283. Handbook of Bioremediation, Academic Press. https://doi.org/10.1016/B978-0-12-819382-2.00017-X
doi: 10.1016/B978-0-12-819382-2.00017-X
Vishwakarma SK, IlyasT MD, Shafi Z, Shahid M, Yadav B, Singh UB, Rai JP, Singh HB, Singh HV (2022) Arbuscular mycorrhizal fungi (AMF) as potential biocontrol agents. In: Singh UB, Sahu PK, Singh HV, Sharma PK, Sharma SK (eds) Rhizosphere microbes. Microorganisms for sustainability, vol 40. Springer, Singapore. https://doi.org/10.1007/978-981-19-5872-4_10
doi: 10.1007/978-981-19-5872-4_10
Volk TJ (2001) Fungi. Encyclopedia of biodiversity. Elsevier, University of Wisconsin–La Crosse, USA, pp 141–163. https://doi.org/10.1016/B0-12-226865-2/00134-6
doi: 10.1016/B0-12-226865-2/00134-6
Volk TJ (2013) Fungi. Encyclopedia of biodiversity, (Second Edition) edn. Academic Press, University of Wisconsin-La Crosse, La Crosse, WI, USA, pp 624–640. https://doi.org/10.1016/B978-0-12-384719-5.00062-9
doi: 10.1016/B978-0-12-384719-5.00062-9
Wang GF, Li H, Zhou Y, Yang LY, Ding ZJ, Huang JS, Pan BZ (2018a) Bacterial wilt of Sacha inchi (Plukenetia volubilis) caused by Ralstonia pseudosolanacearum Phylotype I in Southern China. Plant Dis 103:364–365. https://doi.org/10.1094/PDIS-04-18-0615-PDN
doi: 10.1094/PDIS-04-18-0615-PDN
Wang J, Gao J, Zhang H, Tang M (2022) Changes in rhizosphere soil fungal communities of Pinus tabuliformis plantations at different development stages on the Loess plateau. Int J Mol Sci 23:6753. https://doi.org/10.3390/ijms23126753
doi: 10.3390/ijms23126753
pubmed: 35743198
pmcid: 9223801
Wang RY, GaoB C, SL MJ, LiXH XCX (2017) First report of Rhizopus oryzae causing soft rot on storage roots of sweet potato in China. Plant Dis 101:6. https://doi.org/10.1094/PDIS-09-16-1272-PDN
doi: 10.1094/PDIS-09-16-1272-PDN
Wang S, Zhu F, Kakuda Y (2018b) Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chem 265:316–328. https://doi.org/10.1016/j.foodchem.2018.05.055
doi: 10.1016/j.foodchem.2018.05.055
pubmed: 29884388
Wang W, Liu Z, Wang W, Song X (2019) First report of Macrophomina phaseolina causing stalk rot of Sacha inchi (Plukenetia volubilis) in China. Plant Dis 104:218. https://doi.org/10.1094/PDIS-06-19-1312-PDN
doi: 10.1094/PDIS-06-19-1312-PDN
Weng W, Yan J, Zhou M, Yao X, Gao A, Ma C, Cheng J, Ruan J (2022) Roles of Arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms 10:1266
doi: 10.3390/microorganisms10071266
pubmed: 35888985
pmcid: 9317293
White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols —a guide to methods and applications. Academic Press, San Diego, CA, pp 315–322
Wu Z, Hao Z, Sun Y, Guo L, Huang L, Zeng Y, Wang Y, Yang L, Chen B (2016) Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Appl Soil Ecol 107:99–107. https://doi.org/10.1016/j.apsoil.2016.05.017
doi: 10.1016/j.apsoil.2016.05.017
Xiong C, Singh BK, He JZ, Han YL, Li PP, Wan LH, Meng GZ, Liu SY, Wang JT, Wu CF, Ge AH, Zhang LM (2021) Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9:171. https://doi.org/10.1186/s40168-021-01118-6
doi: 10.1186/s40168-021-01118-6
pubmed: 34389047
pmcid: 8364065
Xu ML, Yang JG, Wang FL, Wu JX, Chi YC (2015) First report of Rhizopus arrhizus (syn. R. oryzae) causing root rot of Peanut in China. Plant Dis 99:1448–1449 10. https://doi.org/10.1094/PDIS-02-15-0235-PDN
doi: 10.1094/PDIS-02-15-0235-PDN
Yang J, Wang F, Wen Y, Gao S, Lu C, Liu Y, Liu H (2021) First report of Fusarium proliferatum causing root rot dsease in Salvia miltiorrhiza in China. Plant Dis 105:4. https://doi.org/10.1094/PDIS-09-20-1908-PDN
doi: 10.1094/PDIS-09-20-1908-PDN
Yang LY, Chen P, Guo LJ, Zhou Y, Wang GF, Du QJ, Huang JS (2017) First report of vine wilt disease caused by Fusarium solani on Sacha inchi (Plukenetia volubilis Linneo) in China. Plant Dis 101:1675. https://doi.org/10.1094/PDIS-04-17-0473-PDN
doi: 10.1094/PDIS-04-17-0473-PDN
Zhang K, Wang L, Si H, Guo H, Liu J, Jia J, Su Q, Wang Y, Zang J, Xing J, Dong J (2022) Maize stalk rot caused by Fusarium graminearum alters soil microbial composition and is directly inhibited by Bacillus siamensis isolated from rhizosphere soil. Front. Microbiol 13:986401. https://doi.org/10.3389/fmicb.2022.986401
doi: 10.3389/fmicb.2022.986401
pubmed: 36338067
pmcid: 9630747
Zhang X, Yu M, Zheng S, Xu C, Li Y, Sun L, Guanghui HG, Yang J, Qiu X (2023) Evaluation of resistance resources and analysis of resistance mechanism of maize to Stalk rot caused by Fusarium graminearum. Plant Dis. https://doi.org/10.1094/PDIS-04-23-0825-RE
Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X, Yin H, Zhang C, Feng K, Deng Y (2017) Thirty one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem 104:208–217. https://doi.org/10.1016/j.soilbio.2016.10.023
doi: 10.1016/j.soilbio.2016.10.023
Zhou J, Xia H, Jiao B, He H, Dai T (2023) First report of crown and root rot caused by fusarium solani on photinia × fraseri in China. Plant Dis 107:4. https://doi.org/10.1094/PDIS-06-22-1479-PDN
doi: 10.1094/PDIS-06-22-1479-PDN