Metastatic potentials classified with hypoxia-inducible factor 1 downstream genes in pan-cancer cell lines.

HIF1 cancer cell line hierarchical clustering metastatic potential

Journal

Genes to cells : devoted to molecular & cellular mechanisms
ISSN: 1365-2443
Titre abrégé: Genes Cells
Pays: England
ID NLM: 9607379

Informations de publication

Date de publication:
29 Dec 2023
Historique:
revised: 17 12 2023
received: 20 06 2023
accepted: 20 12 2023
medline: 2 1 2024
pubmed: 2 1 2024
entrez: 30 12 2023
Statut: aheadofprint

Résumé

Hypoxia-inducible factor 1 (HIF1) is a transcription factor that is stabilized under hypoxia conditions via post-translational modifications. HIF1 regulates tumor malignancy and metastasis by gene transcriptions, such as Warburg effect and angiogenesis-related genes, in cancer cells. However, the HIF1 downstream genes show varied expressional patterns in different cancer types. Herein, we performed the hierarchical clustering based on the HIF1 downstream gene expression patterns using 1406 cancer cell lines crossing 30 types of cancer to understand the relationship between HIF1 downstream genes and the metastatic potential of cancer cell lines. Two types of cancers, including bone and breast cancers, were classified based on HIF1 downstream genes with significantly altered metastatic potentials. Furthermore, different HIF1 downstream gene subsets were extracted to discriminate each subtype for these cancer types. HIF1 downstream subtyping classification will help to understand the novel insight into tumor malignancy and metastasis in each cancer type.

Identifiants

pubmed: 38158708
doi: 10.1111/gtc.13092
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Fukushima Prefecture
Organisme : Japan Society for the Promotion of Science
ID : JP21K15562
Organisme : Japan Society for the Promotion of Science
ID : JP23K06665

Informations de copyright

© 2023 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

Références

Adler, D., Kelly, S. T., Elliott, T., & Adamson, J. (2022). Vioplot: Violin plot. R package version 0.4.0. https://github.com/TomKellyGenetics/vioplot
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson C. J., Lehár, J., Kryukov, G. V., Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M. F., Monahan, J. E., Morais, P., Meltzer, J., Korejwa, A., Jané-Valbuena, J., … Garraway, L. A. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483(7391), 603-607. https://doi.org/10.1038/nature11003
Cantiani, L., Manara, M. C., Zucchini, C., De Sanctis, P., Zuntini, M., Valvassori, L., Serra, M., Olivero, M., Di Renzo, M. F., Colombo, M. P., Picci, P., & Scotlandi, K. (2007). Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Research, 67(16), 7675-7685. https://doi.org/10.1158/0008-5472.CAN-06-4697
Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401-404. https://doi.org/10.1158/2159-8290.CD-12-0095
de Bruijn, I., Kundra, R., Mastrogiacomo, B., Tran, T. N., Sikina, L., Mazor, T., Li, X., Ochoa, A., Zhao, G., Lai, B., Abeshouse, A., Baiceanu, D., Ciftci, E., Dogrusoz, U., Dufilie, A., Erkoc, Z., Garcia Lara, E., Fu, Z., Gross, B., Haynes, C., … Schultz, N. (2023). Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Research, 83, 3861-3867. https://doi.org/10.1158/0008-5472.CAN-23-0816
Diaz-Valdivia, N., Bravo, D., Huerta, H., Henriquez, S., Gabler, F., Vega, M., Romero, C., Calderon, C., Owen, G. I., Leyton, L., & Quest, A. F. (2015). Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells. BMC Cancer, 15, 1-11. https://doi.org/10.1186/s12885-015-1477-5
Ebert, B. L., Firth, J. D., & Ratcliffe, P. J. (1995). Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. Journal of Biological Chemistry, 270(49), 29083-29089. https://doi.org/10.1074/jbc.270.49.29083
Elvidge, G. P., Glenny, L., Appelhoff, R. J., Ratcliffe, P. J., Ragoussis, J., & Gleadle, J. M. (2006). Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: The role of HIF-1α, HIF-2α, and other pathways. Journal of Biological Chemistry, 281(22), 15215-15226. https://doi.org/10.1074/jbc.M511408200
Fluegen, G., Avivar-Valderas, A., Wang, Y., Padgen, M. R., Williams, J. K., Nobre, A. R., Calvo, V., Cheung, J. F., Bravo-Cordero, J. J., Entenberg, D., Castracane, J., Verkhusha, V., Kelly, P. J., Condeelis, J., & Aguirre-Ghiso, J. A. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 19(2), 120-132. https://doi.org/10.1038/ncb3465
Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., & Semenza, G. L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604-4613. https://doi.org/10.1128/MCB.16.9.4604
Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1. https://doi.org/10.1126/scisignal.2004088
Gelmini, S., Mangoni, M., Castiglione, F., Beltrami, C., Pieralli, A., Andersson, K. L., Fambrini, M., Taddei, G. L., Serio, M., & Orlando, C. (2009). The CXCR4/CXCL12 axis in endometrial cancer. Clinical and Experimental Metastasis, 26(3), 261-268. https://doi.org/10.1007/s10585-009-9240-4
Guan, G., Zhang, Y., Lu, Y., Liu, L., Shi, D., Wen, Y., Yang, L., Ma, Q., Liu, T., Zhu, X., Qiu, X., & Zhou, Y. (2015). The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells. Cancer Letters, 357(1), 254-264. https://doi.org/10.1016/j.canlet.2014.11.034
Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., … Laird, P. W. (2018). Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell, 173(2), 291-304.e6. https://doi.org/10.1016/j.cell.2018.03.022
Infantino, V., Santarsiero, A., Convertini, P., Todisco, S., & Iacobazzi, V. (2021). Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. International Journal of Molecular Sciences, 22(11), 5703. https://doi.org/10.3390/ijms22115703
Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., & Kaelin, W. G., Jr. (2001). HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292(5516), 464-468. https://doi.org/10.1126/science.1059817
Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., & Ratcliffe, P. J. (2001). Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468-472. https://doi.org/10.1126/SCIENCE.1059796
Jin, X., Demere, Z., Nair, K., Ali, A., Ferraro, G. B., Natoli, T., Deik, A., Petronio, L., Tang, A. A., Zhu, C., Wang, L., Rosenberg, D., Mangena, V., Roth, J., Chung, K., Jain, R. K., Clish, C. B., Vander Heiden, M. G. & Golub, T. R. (2020). A metastasis map of human cancer cell lines. Nature, 588(7837), 331-336. https://doi.org/10.1038/s41586-020-2969-2
Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., & Shu, Y. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Molecular Cancer, 18(1), 157. https://doi.org/10.1186/s12943-019-1089-9
Kaluz, S., Kaluzová, M., & Stanbridge, E. J. (2008). Rational design of minimal hypoxia-inducible enhancers. Biochemical and Biophysical Research Communications, 370(4), 613-618. https://doi.org/10.1016/j.bbrc.2008.03.147
Kolde, R. (2019). Pheatmap: Pretty heatmaps. R package version 1.0.12. https://cran.r-project.org/package=pheatmap
Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C., & Semenza, G. L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21(12), 3995-4004. https://doi.org/10.1128/MCB.21.12.3995-4004.2001
Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., & Shim, H. (2005). Silencing of CXCR4 blocks breast cancer metastasis. Cancer Research, 65(3), 967-971. https://doi.org/10.1158/0008-5472.967.65.3
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739-1740. https://doi.org/10.1093/BIOINFORMATICS/BTR260
Loboda, A., Jozkowicz, A., & Dulak, J. (2012). HIF-1 versus HIF-2-Is one more important than the other? Vascular Pharmacology, 56(5-6), 245-251. https://doi.org/10.1016/j.vph.2012.02.006
Lu, T., Zhang, Z., Pan, X., Zhang, J., Wang, X., Wang, M., Li, H., Yan, M., & Chen, W. (2022). Caveolin-1 promotes cancer progression via inhibiting ferroptosis in head and neck squamous cell carcinoma. Journal of Oral Pathology and Medicine, 51(1), 52-62. https://doi.org/10.1111/jop.13267
Luo, D., Wang, J., Li, J., & Post, M. (2011). Mouse snail is a target gene for HIFHypoxia. Molecular Cancer Research, 9(2), 234-245. https://doi.org/10.1158/1541-7786.MCR-10-0214
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Sáinz-Jaspeado, M., Lagares-Tena, L., Lasheras, J., Navid, F., Rodriguez-Galindo, C., Mateo-Lozano, S., Notario, V., Sanjuan, X., Garcia Del Muro, X., Fabra A., & Tirado, O. M. (2010). Caveolin-1 modulates the ability of Ewing's sarcoma to metastasize. Molecular Cancer Research, 8(11), 1489-1500. https://doi.org/10.1158/1541-7786.MCR-10-0060
Saito, S., Lin, Y. C., Tsai, M. H., Lin, C. S., Murayama, Y., Sato, R., & Yokoyama, K. K. (2015). Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells. Kaohsiung Journal of Medical Sciences, 31(6), 279-286. https://doi.org/10.1016/j.kjms.2015.03.002
Samara, G. J., Lawrence, D. M., Chiarelli, C. J., Valentino, M. D., Lyubsky, S., Zucker, S., & Vaday, G. G. (2004). CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Letters, 214(2), 231-241. https://doi.org/10.1016/j.canlet.2004.04.035
Schietke, R., Warnecke, C., Wacker, I., Schödel, J., Mole, D. R., Campean, V., Amann, K., Goppelt-Struebe, M., Behrens, J., Eckardt, K. U., & Wiesener, M. S. (2010). The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: Insights into cellular transformation processes mediated by HIF-1. Journal of Biological Chemistry, 285(9), 6658-6669. https://doi.org/10.1074/jbc.M109.042424
Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35(2), 71-103. https://doi.org/10.1080/10409230091169186
Semenza, G. L. (2001). Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine, 7(8), 345-350. https://doi.org/10.1016/S1471-4914(01)02090-1
Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., & Giallongo, A. (1996). Hypoxia response elements in the aldolase a, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry, 271(51), 32529-32537. https://doi.org/10.1074/jbc.271.51.32529
Sloan, E. K., Stanley, K. L., & Anderson, R. L. (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene, 23(47), 7893-7897. https://doi.org/10.1038/sj.onc.1208062
Yang, J., AlTahan, A., Jones, D. T., Buffa, F. M., Bridges, E., Interiano, R. B., Qu, C., Vogt, N., Li, J. L., Baban, D., Ragoussis, J., Nicholson, R., Davidoff, A. M., & Harris, A. L. (2015). Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 112(49), 15172-15177. https://doi.org/10.1073/pnas.1422015112
Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., Teng, S. C., & Wu, K. J. (2008). Direct regulation of TWIST by HIF-1α promotes metastasis. Nature Cell Biology, 10(3), 295-305. https://doi.org/10.1038/ncb1691
Zhang, W., Shi, X., Peng, Y., Wu, M., Zhang, P., Xie, R., Wu, Y., Yan, Q., Liu, S., & Wang, J. (2015). HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS One, 10(6), e0129603. https://doi.org/10.1371/journal.pone.0129603

Auteurs

Kazuya Nakamichi (K)

Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.

Yusuke Yamamoto (Y)

Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.

Kentaro Semba (K)

Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
Translational Research Center, Fukushima Medical University, Fukushima, Japan.

Jun Nakayama (J)

Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.
Department of Oncogenesis and growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan.

Classifications MeSH