Multiple gene-drug prediction tool reveals Rosiglitazone based treatment pathway for non-segmental vitiligo.

PPAR pathway bioinformatics analysis melanogenesis non-segmental vitiligo rosiglitazone

Journal

Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105

Informations de publication

Date de publication:
30 Dec 2023
Historique:
received: 26 06 2023
accepted: 21 11 2023
revised: 15 10 2023
medline: 2 1 2024
pubmed: 2 1 2024
entrez: 30 12 2023
Statut: aheadofprint

Résumé

Vitiligo is a skin disease characterized by selective loss of melanocytes, which seriously affects the appearance and causes great psychological stress to patients. In this study, we performed a comprehensive analysis of two vitiligo microarray datasets from the GEO database using bioinformatics tools to identify 297 up-regulated mRNAs and 186 down-regulated mRNAs, revealing important roles for pathways related to melanin synthesis, tyrosine metabolism, and inflammatory factors, such as "PPAR signaling pathway", "tyrosine metabolism", "nonalcoholic fatty liver disease (NAFLD) pathway", "melanogenesis", and "IL-17 signaling pathway". Combining the Search Tool for Interacting Chemicals (STITCH) database 5.0 and the drug-gene interaction database 3.0 (DGIdb), we identified that the PPAR-γ agonist rosiglitazone may promote melanin synthesis via EDNRB. Next, we investigated the mechanism of rosiglitazone and PPAR-γ pathway in promoting melanin production. Consistent with the results of bioinformatics analysis, the expression levels of PPAR-γ, EDNRB, and TYR were significantly reduced in human non-segmental vitiligo skin along with the reduction of MITF, a key gene for epidermal melanogenesis. Meanwhile, rosiglitazone increased melanin synthesis capacity in melanocytes and zebrafish by activating PPAR-γ and upregulating TYR, TYRP-1, and TYRP-2. Conversely, treatment of melanocytes with the PPAR-γ antagonist GW resulted in inhibition of melanin synthesis and expression of melanin-related factors. At the same time, simultaneous treatment of rosiglitazone with GW reversed the inhibitory effect of GW on melanin synthesis. In this study, we identified that rosiglitazone, an important insulin sensitizer, promotes melanin synthesis in melanocytes by increasing PPAR-γ activity and upregulating the expression levels of EDNRB and TYR. These findings may provide new ideas for exploring the pathogenesis and potential therapeutic targets of non-segmental vitiligo.

Identifiants

pubmed: 38159176
doi: 10.1007/s10753-023-01937-9
pii: 10.1007/s10753-023-01937-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Bergqvist, C., and K. Ezzedine. 2020. Vitiligo: a review. Dermatology (Basel, Switzerland) 236 (6): 571–592. https://doi.org/10.1159/000506103 .
doi: 10.1159/000506103 pubmed: 32155629
Ezzedine, K., H.W. Lim, T. Suzuki, I. Katayama, I. Hamzavi, C.C. Lan, B.K. Goh, T. Anbar, C. Silva de Castro, A.Y. Lee, D. Parsad, N. van Geel, I.C. Le Poole, N. Oiso, L. Benzekri, R. Spritz, Y. Gauthier, S.K. Hann, M. Picardo, and A. Taieb. 2012. Revised classification/nomenclature of vitiligo and related issues: the vitiligo global issues consensus conference. Pigment Cell & Melanoma Research 25: E1–E13. https://doi.org/10.1111/j.1755-148X.2012.00997.x .
doi: 10.1111/j.1755-148X.2012.00997.x
Speeckaert, R., and N. van Geel. 2017. Vitiligo: an update on pathophysiology and treatment options. American Journal of Clinical Dermatology 18 (6): 733–744. https://doi.org/10.1007/s40257-017-0298-5 .
doi: 10.1007/s40257-017-0298-5 pubmed: 28577207
Malhotra, N., and M. Dytoc. 2013. The pathogenesis of vitiligo. Journal of Cutaneous Medicine And Surgery 17 (3): 153–172. https://doi.org/10.2310/7750.2012.12005 .
doi: 10.2310/7750.2012.12005 pubmed: 23673299
Wu, C.S., H.S. Yu, H.R. Chang, C.L. Yu, C.L. Yu, and B.N. Wu. 2000. Cutaneous blood flow and adrenoceptor response increase in segmental-type vitiligo lesions. Journal of Dermatological Science 23 (1): 53–62. https://doi.org/10.1016/s0923-1811(99)00090-0 .
doi: 10.1016/s0923-1811(99)00090-0 pubmed: 10699765
Zhen, Y., L. Yao, S. Zhong, Y. Song, Y. Cui, and S. Li. 2016. Enhanced Th1 and Th17 responses in peripheral blood in active non-segmental vitiligo. Archives of Dermatological Research 308 (10): 703–710. https://doi.org/10.1007/s00403-016-1690-3 .
doi: 10.1007/s00403-016-1690-3 pubmed: 27687555
Harris, J.E. 2015. IFN-γ in Vitiligo, is it the fuel or the fire? Acta Dermato-Venereologica 95 (6): 643–644. https://doi.org/10.2340/00015555-2137 .
doi: 10.2340/00015555-2137 pubmed: 26059003
Singh, R.K., K.M. Lee, I. Vujkovic-Cvijin, D. Ucmak, B. Farahnik, M. Abrouk, M. Nakamura, T.H. Zhu, T. Bhutani, M. Wei, and W. Liao. 2016. The role of IL-17 in vitiligo: a review. Autoimmunity Reviews 15 (4): 397–404. https://doi.org/10.1016/j.autrev.2016.01.004 .
doi: 10.1016/j.autrev.2016.01.004 pubmed: 26804758 pmcid: 4769658
Kemp, E.H., S. Emhemad, S. Akhtar, P.F. Watson, D.J. Gawkrodger, and A.P. Weetman. 2011. Autoantibodies against tyrosine hydroxylase in patients with non-segmental (generalised) vitiligo. Experimental Dermatology 20 (1): 35–40. https://doi.org/10.1111/j.1600-0625.2010.01181.x .
doi: 10.1111/j.1600-0625.2010.01181.x pubmed: 21158937
Jimbo, H., H. Nagai, S. Fujiwara, N. Shimoura, and C. Nishigori. 2020. Fas-FasL interaction in cytotoxic T cell-mediated vitiligo: the role of lesional expression of tumor necrosis factor-α and interferon-γ in Fas-mediated melanocyte apoptosis. Experimental Dermatology 29 (1): 61–70. https://doi.org/10.1111/exd.14053 .
doi: 10.1111/exd.14053 pubmed: 31675451
Karagaiah, P., Y. Valle, J. Sigova, N. Zerbinati, P. Vojvodic, D. Parsad, R.A. Schwartz, S. Grabbe, M. Goldust, and T. Lotti. 2020. Emerging drugs for the treatment of vitiligo. Expert Opinion on Emerging Drugs 25 (1): 7–24. https://doi.org/10.1080/14728214.2020.1712358 .
doi: 10.1080/14728214.2020.1712358 pubmed: 31958256
Njoo, M.D., P.I. Spuls, J.D. Bos, W. Westerhof, and P.M. Bossuyt. 1998. Nonsurgical repigmentation therapies in vitiligo. Meta-analysis of the literature. Archives of Dermatology 134 (12): 1532–1540. https://doi.org/10.1001/archderm.134.12.1532 .
doi: 10.1001/archderm.134.12.1532 pubmed: 9875190
Felsten, L.M., A. Alikhan, and V. Petronic-Rosic. 2011. Vitiligo: a comprehensive overview part II: treatment options and approach to treatment. Journal of the American Academy of Dermatology 65 (3): 493–514. https://doi.org/10.1016/j.jaad.2010.10.043 .
doi: 10.1016/j.jaad.2010.10.043 pubmed: 21839316
Wong, R., and A.N. Lin. 2013. Efficacy of topical calcineurin inhibitors in vitiligo. International Journal of Dermatology 52 (4): 491–496. https://doi.org/10.1111/j.1365-4632.2012.05697.x .
doi: 10.1111/j.1365-4632.2012.05697.x pubmed: 23331250
Shenoi, S.D., S. Prabhu, and Indian Association of Dermatologists, Venereologists and Leprologists. 2014. Photochemotherapy (PUVA) in psoriasis and vitiligo. Indian Journal of Dermatology, Venereology and Leprology 80 (6): 497–504. https://doi.org/10.4103/0378-6323.144143 .
doi: 10.4103/0378-6323.144143 pubmed: 25382505
Zhang, R., X. Yang, J. Wang, L. Han, A. Yang, J. Zhang, D. Zhang, B. Li, Z. Li, and Y. Xiong. 2019. Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome-wide gene expression profiling analysis. Molecular Medicine Reports 19 (1): 30–40. https://doi.org/10.3892/mmr.2018.9677 .
doi: 10.3892/mmr.2018.9677 pubmed: 30483789
Jiang, P., and X.S. Liu. 2015. Big data mining yields novel insights on cancer. Nature Genetics 472): 103–104. https://doi.org/10.1038/ng.3205 .
doi: 10.1038/ng.3205
Regazzetti, C., F. Joly, C. Marty, M. Rivier, B. Mehul, P. Reiniche, C. Mounier, Y. Rival, D. Piwnica, M. Cavalié, B. Chignon-Sicard, R. Ballotti, J. Voegel, and T. Passeron. 2015. Transcriptional analysis of vitiligo skin reveals the alteration of wnt pathway: a promising target for repigmenting vitiligo patients. The Journal of Investigative Dermatology 135 (12): 3105–3114. https://doi.org/10.1038/jid.2015.335 .
doi: 10.1038/jid.2015.335 pubmed: 26322948
Singh, A., V. Gotherwal, P. Junni, V. Vijayan, M. Tiwari, P. Ganju, A. Kumar, P. Sharma, T. Fatima, A. Gupta, A. Holla, H.K. Kar, S. Khanna, L. Thukral, G. Malik, K. Natarajan, C.J. Gadgil, R. Lahesmaa, V.T. Natarajan, et al. 2017. Mapping architectural and transcriptional alterations in non-lesional and lesional epidermis in vitiligo. Scientific Reports 7 (1): 9860. https://doi.org/10.1038/s41598-017-10253-w .
doi: 10.1038/s41598-017-10253-w pubmed: 28852211 pmcid: 5575244
Bader, G.D., and C.W. Hogue. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2. https://doi.org/10.1186/1471-2105-4-2 .
doi: 10.1186/1471-2105-4-2 pubmed: 12525261 pmcid: 149346
Kuhn, M., C. von Mering, M. Campillos, L.J. Jensen, and P. Bork. 2008. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Research 36 (Database issue): D684–D688. https://doi.org/10.1093/nar/gkm795 .
doi: 10.1093/nar/gkm795 pubmed: 18084021
Cotto, K.C., A.H. Wagner, Y.Y. Feng, S. Kiwala, A.C. Coffman, G. Spies, A. Wollam, N.C. Spies, O.L. Griffith, and M. Griffith. 2018. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Research 46 (D1): D1068–D1073. https://doi.org/10.1093/nar/gkx1143 .
doi: 10.1093/nar/gkx1143 pubmed: 29156001
Wagner, A.H., A.C. Coffman, B.J. Ainscough, N.C. Spies, Z.L. Skidmore, K.M. Campbell, K. Krysiak, D. Pan, J.F. McMichael, J.M. Eldred, J.R. Walker, R.K. Wilson, E.R. Mardis, M. Griffith, and O.L. Griffith. 2016. DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Research 44 (D1): D1036–D1044. https://doi.org/10.1093/nar/gkv1165 .
doi: 10.1093/nar/gkv1165 pubmed: 26531824
Li, Z., J. Fu, Y. Cao, C. Xu, X. Han, W. Zhang, Z. Song, and J. Chen. 2021. Drug discovery in rheumatoid arthritis with joint effusion identified by text mining and biomedical databases. Annals of Palliative Medicine 10 (5): 5218–5230. https://doi.org/10.21037/apm-20-2631b .
doi: 10.21037/apm-20-2631b pubmed: 33977746
Marion, M.C., P.S. Ramos, P. Bachali, A.C. Labonte, K.D. Zimmerman, H.C. Ainsworth, S.E. Heuer, R.D. Robl, M.D. Catalina, J.A. Kelly, T.D. Howard, P.E. Lipsky, A.C. Grammer, and C.D. Langefeld. 2021. Nucleic acid-sensing and interferon-inducible pathways show differential methylation in mz twins discordant for lupus and overexpression in independent lupus samples: implications for pathogenic mechanism and drug targeting. Genes 12 (12): 1898. https://doi.org/10.3390/genes12121898 .
doi: 10.3390/genes12121898 pubmed: 34946847 pmcid: 8701117
Yang, D., Y. He, B. Wu, Y. Deng, N. Wang, M. Li, and Y. Liu. 2020. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. Journal of Ovarian Research 13 (1): 10. https://doi.org/10.1186/s13048-020-0613-2 .
doi: 10.1186/s13048-020-0613-2 pubmed: 31987036 pmcid: 6986075
Lu, S., Z. Meng, Y. Tan, C. Wu, Z. Huang, J. Huang, C. Fu, A. Stalin, S. Guo, X. Liu, L. You, X. Li, J. Zhang, W. Zhou, X. Zhang, M. Wang, and J. Wu. 2022. An advanced network pharmacology study to explore the novel molecular mechanism of compound kushen injection for treating hepatocellular carcinoma by bioinformatics and experimental verification. BMC Complementary Medicine and Therapies 22 (1): 54. https://doi.org/10.1186/s12906-022-03530-3 .
doi: 10.1186/s12906-022-03530-3 pubmed: 35236335 pmcid: 8892752
Hopkin, A.S., E.K. Paterson, R. Ruiz, and A.K. Ganesan. 2016. Pigment production analysis in human melanoma cells. Methods in molecular biology (Clifton, N.J.), Advance online publication. https://doi.org/10.1007/7651_2016_359 .
Elbrecht, A., Y. Chen, C.A. Cullinan, N. Hayes, M.D. Leibowitz, D.E. Moller, and J. Berger. 1996. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochemical and Biophysical Research Communications 224 (2): 431–437. https://doi.org/10.1006/bbrc.1996.1044 .
doi: 10.1006/bbrc.1996.1044 pubmed: 8702406
Wang, J.Y., H. Chen, Y.Y. Wang, X.Q. Wang, H.Y. Chen, M. Zhang, Y. Tang, and B. Zhang. 2017. Network pharmacological mechanisms of Vernonia anthelmintica (L.) in the treatment of vitiligo: isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes. BMC Systems Biology 11 (1): 103. https://doi.org/10.1186/s12918-017-0486-1 .
doi: 10.1186/s12918-017-0486-1 pubmed: 29145845 pmcid: 5691595
Lee, H.J., M.K. Park, E.J. Lee, Y.L. Kim, H.J. Kim, J.H. Kang, H.M. Kim, A.Y. Lee, and C.H. Lee. 2012. Histamine receptor 2-mediated growth-differentiation factor-15 expression is involved in histamine-induced melanogenesis. The International Journal of Biochemistry & Cell Biology 44 (12): 2124–2128. https://doi.org/10.1016/j.biocel.2012.08.020 .
doi: 10.1016/j.biocel.2012.08.020
Chen, H.Y., and Y.C. Yeh. 2020. Detection of tyrosine and monitoring tyrosinase activity using an enzyme cascade-triggered colorimetric reaction. RSC Advances 10 (50): 29745–29750. https://doi.org/10.1039/d0ra05581f .
doi: 10.1039/d0ra05581f pubmed: 35518243 pmcid: 9056160
Tang, J., Q. Li, B. Cheng, and L. Jing. 2014. Primary culture of human face skin melanocytes for the study of hyperpigmentation. Cytotechnology 66 (6): 891–898. https://doi.org/10.1007/s10616-013-9643-6 .
doi: 10.1007/s10616-013-9643-6 pubmed: 24113919
Owen, J. P., Kelsh, R. N., & Yates, C. A. 2020. A quantitative modelling approach to zebrafish pigment pattern formation. eLife, 9, e52998. https://doi.org/10.7554/eLife.52998 .
Lajis, A.F.B. 2018. A zebrafish embryo as an animal model for the treatment of hyperpigmentation in cosmetic dermatology medicine. Medicina (Kaunas, Lithuania) 54 (3): 35. https://doi.org/10.3390/medicina54030035 .
doi: 10.3390/medicina54030035 pubmed: 30344266
Hirata, M., K. Nakamura, T. Kanemaru, Y. Shibata, and S. Kondo. 2003. Pigment cell organization in the hypodermis of zebrafish. Developmental Dynamics: an Official Publication of the American Association of Anatomists 227 (4): 497–503. https://doi.org/10.1002/dvdy.10334 .
doi: 10.1002/dvdy.10334 pubmed: 12889058
Kemp, E.H., N.G. Gavalas, D.J. Gawkrodger, and A.P. Weetman. 2007. Autoantibody responses to melanocytes in the depigmenting skin disease vitiligo. Autoimmunity Reviews 6 (3): 138–142. https://doi.org/10.1016/j.autrev.2006.09.010 .
doi: 10.1016/j.autrev.2006.09.010 pubmed: 17289548
Alikhan, A., L.M. Felsten, M. Daly, and V. Petronic-Rosic. 2011. Vitiligo: a comprehensive overview part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. Journal of the American Academy of Dermatology 65 (3): 473–491. https://doi.org/10.1016/j.jaad.2010.11.061 .
doi: 10.1016/j.jaad.2010.11.061 pubmed: 21839315
Yamaguchi, Y., and V.J. Hearing. 2009. Physiological factors that regulate skin pigmentation. BioFactors (Oxford, England) 35 (2): 193–199. https://doi.org/10.1002/biof.29 .
doi: 10.1002/biof.29 pubmed: 19449448
Wasmeier, C., A.N. Hume, G. Bolasco, and M.C. Seabra. 2008. Melanosomes at a glance. Journal of Cell Science 121 (Pt 24): 3995–3999. https://doi.org/10.1242/jcs.040667 .
doi: 10.1242/jcs.040667 pubmed: 19056669
Park, P.J., T.R. Lee, and E.G. Cho. 2015. Substance P stimulates endothelin 1 secretion via endothelin-converting enzyme 1 and promotes melanogenesis in human melanocytes. The Journal of Investigative Dermatology 135 (2): 551–559. https://doi.org/10.1038/jid.2014.423 .
doi: 10.1038/jid.2014.423 pubmed: 25268585
Michalik, L., J. Auwerx, J.P. Berger, V.K. Chatterjee, C.K. Glass, F.J. Gonzalez, P.A. Grimaldi, T. Kadowaki, M.A. Lazar, S. O'Rahilly, C.N. Palmer, J. Plutzky, J.K. Reddy, B.M. Spiegelman, B. Staels, and W. Wahli. 2006. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacological Reviews 58 (4): 726–741. https://doi.org/10.1124/pr.58.4.5 .
doi: 10.1124/pr.58.4.5 pubmed: 17132851
Belfiore, A., M. Genua, and R. Malaguarnera. 2009. PPAR-γ agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Research 2009: 830501. https://doi.org/10.1155/2009/830501 .
doi: 10.1155/2009/830501 pubmed: 19609453 pmcid: 2709717
Berger, J., and D.E. Moller. 2002. The mechanisms of action of PPARs. Annual Review of Medicine 53: 409–435. https://doi.org/10.1146/annurev.med.53.082901.104018 .
doi: 10.1146/annurev.med.53.082901.104018 pubmed: 11818483
Sertznig, P., M. Seifert, W. Tilgen, and J. Reichrath. 2008. Peroxisome proliferator-activated receptors (PPARs) and the human skin: importance of PPARs in skin physiology and dermatologic diseases. American Journal of Clinical Dermatology 9 (1): 15–31. https://doi.org/10.2165/00128071-200809010-00002 .
doi: 10.2165/00128071-200809010-00002 pubmed: 18092840
Gupta, M., V.K. Mahajan, K.S. Mehta, P.S. Chauhan, R. Rawat. 2015. Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the ʻfutureʼ in dermatology therapeutics? Archives of Dermatological Research 307 (9): 767–780. https://doi.org/10.1007/s00403-015-1571-1 .
Michalik, L., B. Desvergne, N.S. Tan, S. Basu-Modak, P. Escher, J. Rieusset, J.M. Peters, G. Kaya, F.J. Gonzalez, J. Zakany, D. Metzger, P. Chambon, D. Duboule, and W. Wahli. 2001. Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta mutant mice. The Journal of Cell Biology 154 (4): 799–814. https://doi.org/10.1083/jcb.200011148 .
doi: 10.1083/jcb.200011148 pubmed: 11514592 pmcid: 2196455
Elmongy, N.N., and O. Shaker. 2012. Expression of peroxisome proliferator activator receptor β/δ (PPARβ/δ) in acne vulgaris. European Journal of Dermatology : EJD 22 (1): 42–45. https://doi.org/10.1684/ejd.2011.1575 .
doi: 10.1684/ejd.2011.1575 pubmed: 22146481
Montagner, A., and W. Wahli. 2013. Contributions of peroxisome proliferator-activated receptor β/δ to skin health and disease. Biomolecular Concepts 4 (1): 53–64. https://doi.org/10.1515/bmc-2012-0035 .
doi: 10.1515/bmc-2012-0035 pubmed: 25436565
Dereli, D., T. Dereli, F. Bayraktar, A.G. Ozgen, and C. Yilmaz. 2005. Endocrine and metabolic effects of rosiglitazone in non-obese women with polycystic ovary disease. Endocrine Journal 52 (3): 299–308. https://doi.org/10.1507/endocrj.52.299 .
doi: 10.1507/endocrj.52.299 pubmed: 16006724
Shi-wen, X., M. Eastwood, R.J. Stratton, C.P. Denton, A. Leask, and D.J. Abraham. 2010. Rosiglitazone alleviates the persistent fibrotic phenotype of lesional skin scleroderma fibroblasts. Rheumatology (Oxford, England) 49 (2): 259–263. https://doi.org/10.1093/rheumatology/kep371 .
doi: 10.1093/rheumatology/kep371 pubmed: 20007285
Theocharis, S., J. Klijanienko, C. Giaginis, J. Rodriguez, T. Jouffroy, A. Girod, D. Point, G. Tsourouflis, and X. Satre-Garau. 2011. Peroxisome proliferator-activated receptor-γ in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. Journal of Cancer Research and Clinical Oncology 137 (2): 251–259. https://doi.org/10.1007/s00432-010-0882-z .
doi: 10.1007/s00432-010-0882-z pubmed: 20390425
Vogt, T., C. Hafner, K. Bross, F. Bataille, K.W. Jauch, A. Berand, M. Landthaler, R. Andreesen, and A. Reichle. 2003. Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer 98 (10): 2251–2256. https://doi.org/10.1002/cncr.11775 .
doi: 10.1002/cncr.11775 pubmed: 14601096
Ahmadian, M., J.M. Suh, N. Hah, C. Liddle, A.R. Atkins, M. Downes, and R.M. Evans. 2013. PPARγ signaling and metabolism: the good, the bad and the future. Nature Medicine 19 (5): 557–566. https://doi.org/10.1038/nm.3159 .
doi: 10.1038/nm.3159 pubmed: 23652116
Flori, E., E. Rosati, G. Cardinali, D. Kovacs, B. Bellei, M. Picardo, and V. Maresca. 2017. The α-melanocyte stimulating hormone/peroxisome proliferator activated receptor-γ pathway down-regulates proliferation in melanoma cell lines. Journal of Experimental & Clinical Cancer Research : CR 36 (1): 142. https://doi.org/10.1186/s13046-017-0611-4 .
doi: 10.1186/s13046-017-0611-4 pmcid: 5637056
Ikeda, K., A.S. Hwang, S.B. Lin, and T. Hikima. 1974. Josai Shika Daigaku kiyo. The Bulletin of the Josai Dental University 3: 277–285.
Zhou, Y., Y. Guo, Y. Zhu, Y. Sun, W. Li, Z. Li, L. Wei. 2021. Dual PPARγ/ɑ agonist oroxyloside suppresses cell cycle progression by glycolipid metabolism switch-mediated increase of reactive oxygen species levels. Free Radical Biology & Medicine 167: 205–217. https://doi.org/10.1016/j.freeradbiomed.2021.02.032 .
Alkhateeb, A., P.R. Fain, A. Thody, D.C. Bennett, and R.A. Spritz. 2003. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Research 16 (3): 208–214. https://doi.org/10.1034/j.1600-0749.2003.00032.x .
doi: 10.1034/j.1600-0749.2003.00032.x pubmed: 12753387
Karadag, A.S., E. Tutal, and D.T. Ertugrul. 2011. Insulin resistance is increased in patients with vitiligo. Acta Dermato-Venereologica 91 (5): 541–544. https://doi.org/10.2340/00015555-1141 .
doi: 10.2340/00015555-1141 pubmed: 21597678
Afkhami-Ardekani, M., A. Ghadiri-Anari, M. Ebrahimzadeh-Ardakani, and N. Zaji. 2014. Prevalence of vitiligo among type 2 diabetic patients in an Iranian population. International Journal of Dermatology 53 (8): 956–958. https://doi.org/10.1111/ijd.12148 .
doi: 10.1111/ijd.12148 pubmed: 24134629
Lee, J.S., Y.M. Choi, and H.Y. Kang. 2007. PPAR-gamma agonist, ciglitazone, increases pigmentation and migration of human melanocytes. Experimental Dermatology 16 (2): 118–123. https://doi.org/10.1111/j.1600-0625.2006.00521.x .
Kang, H.Y., E. Chung, M. Lee, Y. Cho, and W.H. Kang. 2004. Expression and function of peroxisome proliferator-activated receptors in human melanocytes. The British Journal of Dermatology 150 (3): 462–468. https://doi.org/10.1111/j.1365-2133.2004.05844.x .
doi: 10.1111/j.1365-2133.2004.05844.x pubmed: 15030328

Auteurs

Sijia Zhao (S)

Department of dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.

Xi Chen (X)

Department of Dermatology, Allergology and Venereology, Universitätsklinikum Schleswig-Holstein, Lübeck, Schleswig-Holstein, Germany.

Kuheli Dutta (K)

Department of Dermatology, Allergology and Venereology, Universitätsklinikum Schleswig-Holstein, Lübeck, Schleswig-Holstein, Germany.

Jia Chen (J)

Department of dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.

Juan Wang (J)

School of Medicine, Shanghai University, Shanghai, China.

Qian Zhang (Q)

Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.

Hong Jia (H)

Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.

Jianfang Sun (J)

Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China. JianfangSunPUMC@outlook.com.

Yongxian Lai (Y)

Department of dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China. laiyx@shskin.com.

Classifications MeSH