African Swine Fever Virus Host-Pathogen Interactions.

Apoptosis Autophagy Cellular stress Endoplasmic reticulum Interferon Mitochondria Virus entry Virus replication

Journal

Sub-cellular biochemistry
ISSN: 0306-0225
Titre abrégé: Subcell Biochem
Pays: United States
ID NLM: 0316571

Informations de publication

Date de publication:
2023
Historique:
medline: 2 1 2024
pubmed: 2 1 2024
entrez: 30 12 2023
Statut: ppublish

Résumé

African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways. However, how viral proteins and virus-induced structures trigger cellular stress pathways and manipulate the subsequent responses is still relatively poorly understood. African swine fever virus alters nuclear substructures, modulates autophagy, apoptosis and the endoplasmic reticulum stress response pathways. The viral genome encodes for at least 150 genes, of which approximately 70 are incorporated into the virion. Many of the non-structural genes have not been fully characterised and likely play a role in host range and modifying immune responses. As the field moves towards approaches that take a broader view of the effect of expression of individual African swine fever genes, we summarise how the different steps in virus replication interact with the host cell and the current state of knowledge on how it modulates the resulting stress responses.

Identifiants

pubmed: 38159232
doi: 10.1007/978-3-031-40086-5_11
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

283-331

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Abe T, Barber GN (2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J Virol 88(10):5328–5341. https://doi.org/10.1128/jvi.00037-14
doi: 10.1128/jvi.00037-14 pubmed: 24600004 pmcid: 4019140
Afonso CL, Neilan JG, Kutish GF, Rock DL (1996) An African swine fever virus bcl-2 homolog, 5-HL, suppresses apoptotic cell death. J Virol 70(7):4858–4863
pubmed: 8676523 pmcid: 190433 doi: 10.1128/jvi.70.7.4858-4863.1996
Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z, Balinsky CA, Gibb TR, Bean TJ, Zsak L, Rock DL (2004) African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol 78(4):1858–1864. https://doi.org/10.1128/jvi.78.4.1858-1864.2004
doi: 10.1128/jvi.78.4.1858-1864.2004 pubmed: 14747550 pmcid: 369441
Aicher SM, Monaghan P, Netherton CL, Hawes PC (2021) Unpicking the secrets of African swine fever viral replication sites. Viruses 13(1):77. https://doi.org/10.3390/v13010077
doi: 10.3390/v13010077 pubmed: 33429879 pmcid: 7827680
Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. https://doi.org/10.1016/j.cell.2006.02.015
doi: 10.1016/j.cell.2006.02.015 pubmed: 16497588
Alejo A, Yáñez RJ, Rodríguez JM, Viñuela E, Salas ML (1997) African swine fever virus trans-prenyltransferase. J Biol Chem 272(14):9417–9423
pubmed: 9083080 doi: 10.1074/jbc.272.14.9417
Alejo A, Andrés G, Salas ML (2003) African swine fever virus proteinase is essential for core maturation and infectivity. J Virol 77(10):5571–5577
pubmed: 12719549 pmcid: 154020 doi: 10.1128/JVI.77.10.5571-5577.2003
Alejo A, Matamoros T, Guerra M, Andres G (2018) A proteomic atlas of the African swine fever virus particle. J Virol. https://doi.org/10.1128/jvi.01293-18
Allan VJ, Thompson HM, McNiven MA (2002) Motoring around the Golgi. Nat Cell Biol 4(10):E236–E242. https://doi.org/10.1038/ncb1002-e236
doi: 10.1038/ncb1002-e236 pubmed: 12360306
Alonso C, Miskin J, Hernáez B, Fernandez-Zapatero P, Soto L, Cantó C, Rodríguez-Crespo I, Dixon L, Escribano JM (2001) African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75(20):9819–9827
pubmed: 11559815 pmcid: 114554 doi: 10.1128/JVI.75.20.9819-9827.2001
Alves de Matos AP, Carvalho ZG (1993) African swine fever virus interaction with microtubules. Biology of the Cell 78:229–234
doi: 10.1016/0248-4900(93)90134-Z
Andrés G, García-Escudero R, Simón-Mateo C, Viñuela E (1998) African swine fever virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic reticulum. J Virol 72(11):8988–9001
pubmed: 9765444 pmcid: 110316 doi: 10.1128/JVI.72.11.8988-9001.1998
Andrés G, García-Escudero R, Viñuela E, Salas ML, Rodríguez JM (2001) African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. J Virol 75(15):6758–6768
pubmed: 11435554 pmcid: 114402 doi: 10.1128/JVI.75.15.6758-6768.2001
Andrés G, García-Escudero R, Salas ML, Rodríguez JM (2002) Repression of African swine fever virus polyprotein pp220-encoding gene leads to the assembly of icosahedral core-less particles. J Virol 76(6):2654–2666
pubmed: 11861832 pmcid: 135994 doi: 10.1128/JVI.76.6.2654-2666.2002
Andres G, Charro D, Matamoros T, Dillard RS, Abrescia NGA (2020) The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. J Biol Chem 295(1):1–12. https://doi.org/10.1074/jbc.AC119.011196
doi: 10.1074/jbc.AC119.011196 pubmed: 31649031
Angulo A, Viñuela E, Alcamí A (1993) Inhibition of African swine fever virus binding and infectivity by purified recombinant virus attachment protein p12. J Virol 67(9):5463–5471
pubmed: 8350406 pmcid: 237948 doi: 10.1128/jvi.67.9.5463-5471.1993
Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276(38):35243–35246. https://doi.org/10.1074/jbc.C100319200
doi: 10.1074/jbc.C100319200 pubmed: 11477064
Ballester M, Galindo-Cardiel I, Gallardo C, Argilaguet JM, Segalés J, Rodríguez JM, Rodríguez F (2010) Intranuclear detection of African swine fever virus DNA in several cell types from formalin-fixed and paraffin-embedded tissues using a new in situ hybridisation protocol. Journal of virological methods 168(1-2):38–43. https://doi.org/10.1016/j.jviromet.2010.04.013
doi: 10.1016/j.jviromet.2010.04.013 pubmed: 20417663
Ballester M, Rodríguez-Cariño C, Pérez M, Gallardo C, Rodríguez JM, Salas ML, Rodriguez F (2011) Disruption of nuclear organization during the initial phase of African swine fever virus infection. J Virol 85(16):8263–8269. https://doi.org/10.1128/jvi.00704-11
doi: 10.1128/jvi.00704-11 pubmed: 21680527 pmcid: 3147973
Banjara S, Caria S, Dixon LK, Hinds MG, Kvansakul M (2017) Structural insight into African swine fever virus A179L-mediated inhibition of apoptosis. J Virol 91(6):e02228-16. https://doi.org/10.1128/jvi.02228-16
doi: 10.1128/jvi.02228-16 pubmed: 28053104 pmcid: 5331815
Banjara S, Shimmon GL, Dixon LK, Netherton CL, Hinds MG, Kvansakul M (2019) Crystal structure of African swine fever virus A179L with the autophagy regulator beclin. Viruses 11(9):789. https://doi.org/10.3390/v11090789
doi: 10.3390/v11090789 pubmed: 31461953 pmcid: 6784060
Barber C (2015) Stress modulators encoded by African swine fever virus. University of London, St George’s
Barber C, Netherton C, Goatley L, Moon A, Goodbourn S, Dixon L (2017) Identification of residues within the African swine fever virus DP71L protein required for dephosphorylation of translation initiation factor eIF2alpha and inhibiting activation of pro-apoptotic CHOP. Virology 504:107–113. https://doi.org/10.1016/j.virol.2017.02.002
doi: 10.1016/j.virol.2017.02.002 pubmed: 28189088
Barrado-Gil L, Del Puerto A, Galindo I, Cuesta-Geijo M, García-Dorival I, de Motes CM, Alonso C (2021) African swine fever virus ubiquitin-conjugating enzyme is an immunomodulator targeting NF-κB activation. Viruses 13(6):1160. https://doi.org/10.3390/v13061160
doi: 10.3390/v13061160 pubmed: 34204411 pmcid: 8233900
Bernardes C, Antonio A, Lima MCP, De Valdeira ML (1998) Cholesterol affects African swine fever virus infection. Biochim Biophys Acta 1393(1):19–25
pubmed: 9714715 doi: 10.1016/S0005-2760(98)00051-4
Blackford AN, Bruton RK, Dirlik O, Stewart GS, Taylor AM, Dobner T, Grand RJ, Turnell AS (2008) A role for E1B-AP5 in ATR signaling pathways during adenovirus infection. J Virol 82(15):7640–7652. https://doi.org/10.1128/jvi.00170-08
doi: 10.1128/jvi.00170-08 pubmed: 18480432 pmcid: 2493339
Borca MV, Irusta P, Carrillo C, Afonso CL, Burrage T, Rock DL (1994) African swine fever virus structural protein p72 contains a conformational neutralizing epitope. Virology 201:413–418
pubmed: 7514322 doi: 10.1006/viro.1994.1311
Brookes SM, Dixon LK, Parkhouse RME (1996) Assembly of African swine fever virus: quantitative ultrastructural analysis in vitro and in vivo. Virology 224:84–92
pubmed: 8862402 doi: 10.1006/viro.1996.0509
Brown CL, Maier KC, Stauber T, Ginkel LM, Wordeman L, Vernos I, Schroer TA (2005) Kinesin-2 is a motor for late endosomes and lysosomes. Traffic 6(12):1114–1124. https://doi.org/10.1111/j.1600-0854.2005.00347.x
doi: 10.1111/j.1600-0854.2005.00347.x pubmed: 16262723
Brun A, Rodríguez F, Escribano JM, Alonso C (1998) Functionality and cell anchorage dependence of the African swine fever virus gene A179L, a viral bcl-2 homolog, in insect cells. J Virol 72(12):10227–10233
pubmed: 9811766 pmcid: 110577 doi: 10.1128/JVI.72.12.10227-10233.1998
Cackett G, Matelska D, Sýkora M, Portugal R, Malecki M, Bähler J, Dixon L, Werner F (2020) The African swine fever virus transcriptome. J Virol 94(9):e00119-20. https://doi.org/10.1128/jvi.00119-20
doi: 10.1128/jvi.00119-20 pubmed: 32075923 pmcid: 7163114
Cackett G, Portugal R, Matelska D, Dixon L, Werner F (2022) African swine fever virus and host response: transcriptome profiling of the georgia 2007/1 strain and porcine macrophages. J Virol 96(5):e0193921. https://doi.org/10.1128/jvi.01939-21
doi: 10.1128/jvi.01939-21 pubmed: 35019713
Cai S, Zheng Z, Cheng J, Zhong L, Shao R, Zheng F, Lai Z, Ou J, Xu L, Zhou P, Lu G, Zhang G (2022) Swine interferon-inducible transmembrane proteins potently inhibit African swine fever virus replication. Front Immunol 13:827709. https://doi.org/10.3389/fimmu.2022.827709
doi: 10.3389/fimmu.2022.827709 pubmed: 35401540 pmcid: 8989734
Carrasco L, Chacón-M de Lara F, Martín de las Mulas J, Gómez-Villamandos JC, Pérez J, Wilkinson PJ, Sierra MA (1996) Apoptosis in lymph nodes in acute African swine fever. J Comp Path 115:415–428
pubmed: 9004082 doi: 10.1016/S0021-9975(96)80075-2
Carrascosa AL, Bustos MJ, Nogal ML, González de Buitrago G, Revilla Y (2002) Apoptosis in an early step of African swine fever virus entry into Vero cells does not require virus replication. Virology 294:372–382
pubmed: 12009879 doi: 10.1006/viro.2001.1348
Carvalho ZG, Alves De Matos AP, Rodrigues-Pousada C (1988) Association of African swine fever virus with the cytoskeleton. Virus Res 11:175–192
pubmed: 3201825 doi: 10.1016/0168-1702(88)90042-1
Castelló A, Quintas A, Sánchez EG, Sabina P, Nogal M, Carrasco L, Revilla Y (2009) Regulation of host translational machinery by African swine fever virus. PLoS pathogens 5(8):e1000562. https://doi.org/10.1371/journal.ppat.1000562
doi: 10.1371/journal.ppat.1000562 pubmed: 19714237 pmcid: 2727446
Chacón MR, Almazán F, Nogal ML, Viñuela E, Rodríguez JF (1995) The African swine fever virus IAP homolg is a late structural polypeptide. Virology 214:670–674
pubmed: 8553574 doi: 10.1006/viro.1995.0083
Chan TO, Rittenhouse SE, Tsichlis PN (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68:965–1014. https://doi.org/10.1146/annurev.biochem.68.1.965
doi: 10.1146/annurev.biochem.68.1.965 pubmed: 10872470
Chapman DA, Tcherepanov V, Upton C, Dixon LK (2008) Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol 89(Pt 2):397–408. https://doi.org/10.1099/vir.0.83343-0
doi: 10.1099/vir.0.83343-0 pubmed: 18198370
Chen W, Srinath H, Lam SS, Schiffer CA, Royer WE Jr, Lin K (2008) Contribution of Ser386 and Ser396 to activation of interferon regulatory factor 3. J Mol Biol 379(2):251–260. https://doi.org/10.1016/j.jmb.2008.03.050
doi: 10.1016/j.jmb.2008.03.050 pubmed: 18440553 pmcid: 2410038
Chen S, Zhang X, Nie Y, Li H, Chen W, Lin W, Chen F, Xie Q (2021) African swine fever virus protein E199L promotes cell autophagy through the interaction of PYCR2. Virol Sin 36(2):196–206. https://doi.org/10.1007/s12250-021-00375-x
doi: 10.1007/s12250-021-00375-x pubmed: 33830435 pmcid: 8027715
Chen H, Wang Z, Gao X, Lv J, Hu Y, Jung YS, Zhu S, Wu X, Qian Y, Dai J (2022) ASFV pD345L protein negatively regulates NF-κB signalling by inhibiting IKK kinase activity. Vet Res 53(1):32. https://doi.org/10.1186/s13567-022-01050-z
doi: 10.1186/s13567-022-01050-z pubmed: 35461299 pmcid: 9034082
Cheng M, Kanyema MM, Sun Y, Zhao W, Lu Y, Wang J, Li X, Shi C, Wang J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Zeng Y, Wang C, Cao X (2023) African swine fever virus L83L negatively regulates the cGAS-STING-mediated IFN-I pathway by recruiting tollip to promote STING autophagic degradation. J Virol 97(5):e0192322. https://doi.org/10.1128/jvi.01923-22
doi: 10.1128/jvi.01923-22 pubmed: 36779759
Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591. https://doi.org/10.1016/j.cell.2009.06.015
doi: 10.1016/j.cell.2009.06.015 pubmed: 19631370 pmcid: 2747301
Chlanda P, Carbajal MA, Cyrklaff M, Griffiths G, Krijnse-Locker J (2009) Membrane rupture generates single open membrane sheets during vaccinia virus assembly. Cell Host Microbe 6(1):81–90. https://doi.org/10.1016/j.chom.2009.05.021
doi: 10.1016/j.chom.2009.05.021 pubmed: 19616767
Chlanda P, Carbajal MA, Kolovou A, Hamasaki M, Cyrklaff M, Griffiths G, Krijnse-Locker J (2011) Vaccinia virus lacking A17 induces complex membrane structures composed of open membrane sheets. Arch Virol 156(9):1647–1653. https://doi.org/10.1007/s00705-011-1012-1
doi: 10.1007/s00705-011-1012-1 pubmed: 21590268
Cobbold C, Whittle JT, Wileman T (1996) Involvement of the endoplasmic reticulum in the assembly and envelopment of African swine fever virus. J Virol 70(12):8382–8390
pubmed: 8970959 pmcid: 190927 doi: 10.1128/jvi.70.12.8382-8390.1996
Cobbold C, Brookes SM, Wileman T (2000) Biochemical requirements of virus wrapping by the endoplasmic reticulum calcium store during envelopment of African swine fever virus. J Virol 74(5):2151–2160
pubmed: 10666244 pmcid: 111695 doi: 10.1128/JVI.74.5.2151-2160.2000
Coelho J, Martins C, Ferreira F, Leitão A (2015) African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase. Virology 474:82–93. https://doi.org/10.1016/j.virol.2014.10.034
doi: 10.1016/j.virol.2014.10.034 pubmed: 25463606
Correia S, Ventura S, Parkhouse RM (2013) Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Res 173(1):87–100. https://doi.org/10.1016/j.virusres.2012.10.013
doi: 10.1016/j.virusres.2012.10.013 pubmed: 23165138
Correia S, Moura PL, Ventura S, Leitão A, Parkhouse RME (2023) I329L: a dual action viral antagonist of TLR activation encoded by the African swine fever virus (ASFV). Viruses 15(2):445
pubmed: 36851659 pmcid: 9965916 doi: 10.3390/v15020445
Cuervo AM (2011) Chaperone-mediated autophagy: dice’s ‘wild’ idea about lysosomal selectivity. Nat Rev Mol Cell Biol 12(8):535–541. https://doi.org/10.1038/nrm3150
doi: 10.1038/nrm3150 pubmed: 21750569
Cuesta-Geijo M, Chiappi M, Galindo I, Barrado-Gil L, Muñoz-Moreno R, Carrascosa JL, Alonso C (2016) Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection. J Virol 90(3):1534–1543. https://doi.org/10.1128/jvi.02694-15
doi: 10.1128/jvi.02694-15 pubmed: 26608317 pmcid: 4719630
Cuesta-Geijo M, Barrado-Gil L, Galindo I, Muñoz-Moreno R, Alonso C (2017) Redistribution of endosomal membranes to the African swine fever virus replication site. Viruses 9(6):133. https://doi.org/10.3390/v9060133
doi: 10.3390/v9060133 pubmed: 28587154 pmcid: 5490810
Cuesta-Geijo M, García-Dorival I, Del Puerto A, Urquiza J, Galindo I, Barrado-Gil L, Lasala F, Cayuela A, Sorzano COS, Gil C, Delgado R, Alonso C (2022) New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathogens 18(1):e1009784. https://doi.org/10.1371/journal.ppat.1009784
doi: 10.1371/journal.ppat.1009784 pubmed: 35081156 pmcid: 8820605
Cui S, Wang Y, Gao X, Xin T, Wang X, Yu H, Chen S, Jiang Y, Chen Q, Jiang F, Wang D, Guo X, Jia H, Zhu H (2022) African swine fever virus M1249L protein antagonizes type I interferon production via suppressing phosphorylation of TBK1 and degrading IRF3. Virus Res 319:198872. https://doi.org/10.1016/j.virusres.2022.198872
doi: 10.1016/j.virusres.2022.198872 pubmed: 35853521
Cusson-Hermance N, Khurana S, Lee TH, Fitzgerald KA, Kelliher MA (2005) Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem 280(44):36560–36566. https://doi.org/10.1074/jbc.M506831200
doi: 10.1074/jbc.M506831200 pubmed: 16115877
Das T, Yang X, Lee H, Garst EH, Valencia E, Chandran K, Im W, Hang HC (2022) S-palmitoylation and sterol interactions mediate antiviral specificity of IFITMs. ACS Chem Biol. https://doi.org/10.1021/acschembio.2c00176
De Duve C (1963) The lysosome. Sci Am 208:64–72. https://doi.org/10.1038/scientificamerican0563-64
doi: 10.1038/scientificamerican0563-64 pubmed: 14025755
de Oliveira VL, Almeida SC, Soares HR, Crespo A, Marshall-Clarke S, Parkhouse RM (2011) A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Arch Virol 156(4):597–609. https://doi.org/10.1007/s00705-010-0894-7
doi: 10.1007/s00705-010-0894-7 pubmed: 21203785 pmcid: 3066390
Dodantenna N, Ranathunga L, Chathuranga WAG, Weerawardhana A, Cha JW, Subasinghe A, Gamage N, Haluwana DK, Kim Y, Jheong W, Poo H, Lee JS (2022) African swine fever virus EP364R and C129R target cyclic GMP-AMP to inhibit the cGAS-STING signaling pathway. J Virol 96(15):e0102222. https://doi.org/10.1128/jvi.01022-22
doi: 10.1128/jvi.01022-22 pubmed: 35861515
Doodnauth SA, Grinstein S, Maxson ME (2019) Constitutive and stimulated macropinocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis. Philos Trans R Soc Lond B Biol Sci 374(1765):20180147. https://doi.org/10.1098/rstb.2018.0147
doi: 10.1098/rstb.2018.0147 pubmed: 30967001
Driskell OJ, Mironov A, Allan VJ, Woodman PG (2007) Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nat Cell Biol 9(1):113–120. https://doi.org/10.1038/ncb1525
doi: 10.1038/ncb1525 pubmed: 17173037
Eulálio A, Nunes-Correia I, Carvalho AL, Faro C, Citovsky V, Salas J, Salas ML, Simões S, de Lima MC (2006) Nuclear export of African swine fever virus p37 protein occurs through two distinct pathways and is mediated by three independent signals. J Virol 80(3):1393–1404. https://doi.org/10.1128/jvi.80.3.1393-1404.2006
doi: 10.1128/jvi.80.3.1393-1404.2006 pubmed: 16415017 pmcid: 1346947
Eulálio A, Nunes-Correia I, Salas J, Salas ML, Simões S, Pedroso de Lima MC (2007) African swine fever virus p37 structural protein is localized in nuclear foci containing the viral DNA at early post-infection times. Virus Res 130(1-2):18–27. https://doi.org/10.1016/j.virusres.2007.05.009
doi: 10.1016/j.virusres.2007.05.009 pubmed: 17580096
Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A (2006) PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80(16):7995–8005. https://doi.org/10.1128/jvi.00734-06
doi: 10.1128/jvi.00734-06 pubmed: 16873256 pmcid: 1563828
Everett RD, Parada C, Gripon P, Sirma H, Orr A (2008) Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 82(6):2661–2672. https://doi.org/10.1128/jvi.02308-07
doi: 10.1128/jvi.02308-07 pubmed: 18160441
Fang R, Jiang Q, Zhou X, Wang C, Guan Y, Tao J, Xi J, Feng JM, Jiang Z (2017) MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner. PLoS pathogens 13(11):e1006720. https://doi.org/10.1371/journal.ppat.1006720
doi: 10.1371/journal.ppat.1006720 pubmed: 29125880 pmcid: 5699845
Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4(5):491–496. https://doi.org/10.1038/ni921
doi: 10.1038/ni921 pubmed: 12692549
Franzoni G, Graham SP, Giudici SD, Bonelli P, Pilo G, Anfossi AG, Pittau M, Nicolussi PS, Laddomada A, Oggiano A (2017) Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets. Vet Microbiol 198:88–98. https://doi.org/10.1016/j.vetmic.2016.12.010
doi: 10.1016/j.vetmic.2016.12.010 pubmed: 28062012
Franzoni G, Dei Giudici S, Oggiano A (2018) Infection, modulation and responses of antigen-presenting cells to African swine fever viruses. Virus Res 258:73–80. https://doi.org/10.1016/j.virusres.2018.10.007
doi: 10.1016/j.virusres.2018.10.007 pubmed: 30316802
Frouco G, Freitas FB, Coelho J, Leitao A, Martins C, Ferreira F (2017) DNA-binding properties of African swine fever virus pA104R, a histone-like protein involved in viral replication and transcription. J Virol 91(12):e02498-16. https://doi.org/10.1128/jvi.02498-16
doi: 10.1128/jvi.02498-16 pubmed: 28381576 pmcid: 5446646
Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol 20(6):355–362. https://doi.org/10.1016/j.tcb.2010.03.002
doi: 10.1016/j.tcb.2010.03.002 pubmed: 20356743 pmcid: 3781210
Galindo I, Almazán F, Bustos MJ, Viñuela E, Carrascosa AL (2000) African swine fever virus EP153R open reading frame encodes a glycoprotein involved in the hemadsorption of infected cells. Virology 266(2):340–351. https://doi.org/10.1006/viro.1999.0080
doi: 10.1006/viro.1999.0080 pubmed: 10639320
Galindo I, Hernaez B, Díaz-Gil G, Escribano JM, Alonso C (2008) A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology 375(2):561–572. https://doi.org/10.1016/j.virol.2008.01.050
doi: 10.1016/j.virol.2008.01.050 pubmed: 18329683
Galindo I, Hernáez B, Muñoz-Moreno R, Cuesta-Geijo MA, Dalmau-Mena I, Alonso C (2012) The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis 3(7):e341. https://doi.org/10.1038/cddis.2012.81
doi: 10.1038/cddis.2012.81 pubmed: 22764100 pmcid: 3406580
García-Beato R, Salas ML, Viñuela E, Salas J (1992) Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology 188:637–649
pubmed: 1585638 doi: 10.1016/0042-6822(92)90518-T
García-Belmonte R, Pérez-Núñez D, Pittau M, Richt JA, Revilla Y (2019) African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. J Virol 93(12):e02298-18. https://doi.org/10.1128/jvi.02298-18
doi: 10.1128/jvi.02298-18 pubmed: 30918080 pmcid: 6613762
Geraldes A, Valdeira M (1985) Effect of chloroquine on African swine fever virus infection. J Gen Virol 66:1145–1148
pubmed: 3998709 doi: 10.1099/0022-1317-66-5-1145
Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (1997) CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci U S A 94(7):2927–2932. https://doi.org/10.1073/pnas.94.7.2927
doi: 10.1073/pnas.94.7.2927 pubmed: 9096323 pmcid: 20299
Golding JP, Goatley L, Goodbourn S, Dixon LK, Taylor G, Netherton CL (2016) Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology 493:154–161. https://doi.org/10.1016/j.virol.2016.03.019
doi: 10.1016/j.virol.2016.03.019 pubmed: 27043071
Gómez-Puertas P, Rodríguez F, Oviedo JM, Ramiro-Ibáñez F, Ruiz-Gonzalvo F, Alonso C, Escribano JM (1996) Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol 70(8):5689–5694. https://doi.org/10.1128/JVI.70.8.5689-5694.1996
doi: 10.1128/JVI.70.8.5689-5694.1996 pubmed: 8764090 pmcid: 190536
Gomez-Puertas P, Rodriguez F, Oviedo JM, Brun A, Alonso C, Escribano JM (1998) The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243(2):461–471. https://doi.org/10.1006/viro.1998.9068
doi: 10.1006/viro.1998.9068 pubmed: 9568043
Gonzalez Juarrero M, Mebus CA, Pan R, Revilla Y, Alonso JM, Lunney JK (1992) Swine leukocyte antigen and macrophage marker expression on both African swine fever virus-infected and non-infected primary porcine macrophage cultures. Vet Immunol Immunopathol 32(3-4):243–259. https://doi.org/10.1016/0165-2427(92)90049-v
doi: 10.1016/0165-2427(92)90049-v pubmed: 1632065
Goubau D, Deddouche S, Reis e Sousa C (2013) Cytosolic sensing of viruses. Immunity 38(5):855–869. https://doi.org/10.1016/j.immuni.2013.05.007
doi: 10.1016/j.immuni.2013.05.007 pubmed: 23706667 pmcid: 7111113
Granger E, McNee G, Allan V, Woodman P (2014) The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 31(100):20–29. https://doi.org/10.1016/j.semcdb.2014.04.011
doi: 10.1016/j.semcdb.2014.04.011 pubmed: 24727350 pmcid: 4071412
Granja AG, Nogal ML, Hurtado C, Salas J, Salas ML, Carrascosa AL, Revilla Y (2004) Modulation of p53 cellular function and cell death by African swine fever virus. J Virol 78(13):7165–7174. https://doi.org/10.1128/jvi.78.13.7165-7174.2004
doi: 10.1128/jvi.78.13.7165-7174.2004 pubmed: 15194793 pmcid: 421689
Granja AG, Nogal ML, Hurtado C, Del Aguila C, Carrascosa AL, Salas ML, Fresno M, Revilla Y (2006a) The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway. J Immunol 176(1):451–462
pubmed: 16365438 doi: 10.4049/jimmunol.176.1.451
Granja AG, Sabina P, Salas ML, Fresno M, Revilla Y (2006b) Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. J Virol 80(21):10487–10496. https://doi.org/10.1128/jvi.00862-06
doi: 10.1128/jvi.00862-06 pubmed: 17041221 pmcid: 1641776
Gui X, Yang H, Li T, Tan X, Shi P, Li M, Du F, Chen ZJ (2019) Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567(7747):262–266. https://doi.org/10.1038/s41586-019-1006-9
doi: 10.1038/s41586-019-1006-9 pubmed: 30842662 pmcid: 9417302
Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21(7):677–687. https://doi.org/10.1038/nm.3893
doi: 10.1038/nm.3893 pubmed: 26121197 pmcid: 4519035
Häcker H, Tseng PH, Karin M (2011) Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 11(7):457–468. https://doi.org/10.1038/nri2998
doi: 10.1038/nri2998 pubmed: 21660053
Hawes PC, Netherton CL, Wileman TE, Monaghan P (2008) The envelope of intracellular African swine fever virus is composed of a single lipid bilayer. J Virol 82(16):7905–7912. https://doi.org/10.1128/jvi.00194-08
doi: 10.1128/jvi.00194-08 pubmed: 18550658 pmcid: 2519565
He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910
doi: 10.1146/annurev-genet-102808-114910 pubmed: 19653858 pmcid: 2831538
Heath CM, Windsor M, Wileman T (2001) Aggresomes resemble sites specialized for virus assembly. J Cell Biol 153(3):449–456
pubmed: 11331297 pmcid: 2190574 doi: 10.1083/jcb.153.3.449
Hernaez B, Alonso C (2010) Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol 84(4):2100–2109. https://doi.org/10.1128/jvi.01557-09
doi: 10.1128/jvi.01557-09 pubmed: 19939916
Hernáez B, Díaz-Gil G, García-Gallo M, Ignacio Quetglas J, Rodríguez-Crespo I, Dixon L, Escribano JM, Alonso C (2004) The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis. FEBS Lett 569(1-3):224–228. https://doi.org/10.1016/j.febslet.2004.06.001
doi: 10.1016/j.febslet.2004.06.001 pubmed: 15225638
Hernaez B, Escribano JM, Alonso C (2006) Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera. Virology 350(1):1–14. https://doi.org/10.1016/j.virol.2006.01.021
doi: 10.1016/j.virol.2006.01.021 pubmed: 16490226
Hernáez B, Tarragó T, Giralt E, Escribano JM, Alonso C (2010) Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. J Virol 84(20):10792–10801. https://doi.org/10.1128/jvi.01168-10
doi: 10.1128/jvi.01168-10 pubmed: 20686048 pmcid: 2950572
Hernaez B, Cabezas M, Muñoz-Moreno R, Galindo I, Cuesta-Geijo MA, Alonso C (2013) A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med 13(2):305–316
pubmed: 23228131 doi: 10.2174/156652413804810736
Hernáez B, Guerra M, Salas ML, Andrés G (2016) African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes. PLoS pathogens 12(4):e1005595. https://doi.org/10.1371/journal.ppat.1005595
doi: 10.1371/journal.ppat.1005595 pubmed: 27110717 pmcid: 4844166
Hertzog J, Rehwinkel J (2020) Regulation and inhibition of the DNA sensor cGAS. EMBO Rep 21(12):e51345. https://doi.org/10.15252/embr.202051345
doi: 10.15252/embr.202051345 pubmed: 33155371 pmcid: 7726805
Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312(5773):572–576. https://doi.org/10.1126/science.1123480
doi: 10.1126/science.1123480 pubmed: 16645094
Hofmann S, Stubbe M, Mai J, Schreiner S (2021) Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 295:198280. https://doi.org/10.1016/j.virusres.2020.198280
doi: 10.1016/j.virusres.2020.198280 pubmed: 33370557
Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6(9):644–658. https://doi.org/10.1038/nri1900
doi: 10.1038/nri1900 pubmed: 16932750
Honda K, Takaoka A, Taniguchi T (2006) Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25(3):349–360. https://doi.org/10.1016/j.immuni.2006.08.009
doi: 10.1016/j.immuni.2006.08.009 pubmed: 16979567
Hong J, Chi X, Yuan X, Wen F, Rai KR, Wu L, Song Z, Wang S, Guo G, Chen JL (2022) I226R protein of African swine fever virus is a suppressor of innate antiviral responses. Viruses 14(3):575. https://doi.org/10.3390/v14030575
doi: 10.3390/v14030575 pubmed: 35336982 pmcid: 8951476
Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997. https://doi.org/10.1126/science.1132505
doi: 10.1126/science.1132505 pubmed: 17038590
Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146(3):448–461. https://doi.org/10.1016/j.cell.2011.06.041
doi: 10.1016/j.cell.2011.06.041 pubmed: 21782231 pmcid: 3179916
Huang L, Xu W, Liu H, Xue M, Liu X, Zhang K, Hu L, Li J, Liu X, Xiang Z, Zheng J, Li C, Chen W, Bu Z, Xiong T, Weng C (2021) African swine fever virus pI215L negatively regulates cGAS-STING signaling pathway through recruiting RNF138 to inhibit K63-linked ubiquitination of TBK1. J Immunol 207(11):2754–2769. https://doi.org/10.4049/jimmunol.2100320
doi: 10.4049/jimmunol.2100320 pubmed: 34759016
Huang L, Liu H, Ye G, Liu X, Chen W, Wang Z, Zhao D, Zhang Z, Feng C, Hu L, Yu H, Zhou S, Zhang X, He X, Zheng J, Bu Z, Li J, Weng C (2023) Deletion of African Swine Fever Virus (ASFV) H240R gene attenuates the virulence of ASFV by enhancing NLRP3-mediated inflammatory responses. J Virol 97(2):e0122722. https://doi.org/10.1128/jvi.01227-22
doi: 10.1128/jvi.01227-22 pubmed: 36656014
Hurtado C, Granja AG, Bustos MJ, Nogal ML, Gonzalez de Buitrago G, de Yebenes VG, Salas ML, Revilla Y, Carrascosa AL (2004) The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology 326(1):160–170. https://doi.org/10.1016/j.virol.2004.05.019
doi: 10.1016/j.virol.2004.05.019 pubmed: 15262504
Hurtado C, Bustos MJ, Granja AG, de León P, Sabina P, López-Viñas E, Gómez-Puertas P, Revilla Y, Carrascosa AL (2011) The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens. Arch Virol 156(2):219–234. https://doi.org/10.1007/s00705-010-0846-2
doi: 10.1007/s00705-010-0846-2 pubmed: 21069396
Huxford T, Huang DB, Malek S, Ghosh G (1998) The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95(6):759–770. https://doi.org/10.1016/s0092-8674(00)81699-2
doi: 10.1016/s0092-8674(00)81699-2 pubmed: 9865694
Imbery J, Upton C (2017) Organization of the multigene families of African swine fever virus. Fine Focus 3(2):155–171
doi: 10.33043/FF.3.2.155-170
Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213):674–678. https://doi.org/10.1038/nature07317
doi: 10.1038/nature07317 pubmed: 18724357 pmcid: 2804933
Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, Grishin NV, Chen ZJ (2012) Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36(6):959–973. https://doi.org/10.1016/j.immuni.2012.03.022
doi: 10.1016/j.immuni.2012.03.022 pubmed: 22705106 pmcid: 3412146
Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898
pubmed: 9864362 pmcid: 2175217 doi: 10.1083/jcb.143.7.1883
Jouvenet N, Wileman T (2005) African swine fever virus infection disrupts centrosome assembly and function. J Gen Virol 86(3):589–594
pubmed: 15722518 doi: 10.1099/vir.0.80623-0
Jouvenet N, Monaghan P, Way M, Wileman T (2004) Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin. J Virol 78(15):7990–8001
pubmed: 15254171 pmcid: 446130 doi: 10.1128/JVI.78.15.7990-8001.2004
Jouvenet N, Windsor M, Rietdorf J, Hawes P, Monaghan P, Way M, Wileman T (2006) African swine fever virus induces filopodia-like projections at the plasma membrane. Cell Microbiol 8(11):1803–1811. https://doi.org/10.1111/j.1462-5822.2006.00750.x
doi: 10.1111/j.1462-5822.2006.00750.x pubmed: 16869831
Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150(6):1507–1513. https://doi.org/10.1083/jcb.150.6.1507
doi: 10.1083/jcb.150.6.1507 pubmed: 10995454 pmcid: 2150712
Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663. https://doi.org/10.1146/annurev.immunol.18.1.621
doi: 10.1146/annurev.immunol.18.1.621 pubmed: 10837071
Kaspar S, Oertlin C, Szczepanowska K, Kukat A, Senft K, Lucas C, Brodesser S, Hatzoglou M, Larsson O, Topisirovic I, Trifunovic A (2021) Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Sci Adv 7(22):eabf0971. https://doi.org/10.1126/sciadv.abf0971
doi: 10.1126/sciadv.abf0971 pubmed: 34039602 pmcid: 8153728
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101–105. https://doi.org/10.1038/nature04734
doi: 10.1038/nature04734 pubmed: 16625202
Katsafanas GC, Moss B (2007) Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2(4):221–228. https://doi.org/10.1016/j.chom.2007.08.005
doi: 10.1016/j.chom.2007.08.005 pubmed: 18005740 pmcid: 2084088
Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988. https://doi.org/10.1038/ni1243
doi: 10.1038/ni1243 pubmed: 16127453
Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461. https://doi.org/10.3389/fimmu.2014.00461
doi: 10.3389/fimmu.2014.00461 pubmed: 25309543 pmcid: 4174766
Kay-Jackson PC, Goatley LC, Cox L, Miskin JE, Parkhouse RME, Wienands J, Dixon LK (2004) The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. J Gen Virol 85(Pt 1):119–130. https://doi.org/10.1099/vir.0.19435-0
doi: 10.1099/vir.0.19435-0 pubmed: 14718626
Keßler C, Forth JH, Keil GM, Mettenleiter TC, Blome S, Karger A (2018) The intracellular proteome of African swine fever virus. Sci Rep 8(1):14714. https://doi.org/10.1038/s41598-018-32985-z
doi: 10.1038/s41598-018-32985-z pubmed: 30279544 pmcid: 6168524
Kim TK, Maniatis T (1997) The mechanism of transcriptional synergy of an in vitro assembled interferon-beta enhanceosome. Mol Cell 1(1):119–129. https://doi.org/10.1016/s1097-2765(00)80013-1
doi: 10.1016/s1097-2765(00)80013-1 pubmed: 9659909
Kleiboeker SB, Burrage TG, Scoles GA, Fish D, Rock DL (1998) African swine fever virus infection in the argasid host, ornithodoros porcinus porcinus. J Virol 72(3):1711–1724
pubmed: 9499019 pmcid: 109458 doi: 10.1128/JVI.72.3.1711-1724.1998
Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69(7):1125–1136. https://doi.org/10.1007/s00018-011-0865-5
doi: 10.1007/s00018-011-0865-5 pubmed: 22080117
Li D, Yang W, Li L, Li P, Ma Z, Zhang J, Qi X, Ren J, Ru Y, Niu Q, Liu Z, Liu X, Zheng H (2021a) African swine fever virus MGF-505-7R negatively regulates cGAS-STING-mediated signaling pathway. J Immunol 206(8):1844–1857. https://doi.org/10.4049/jimmunol.2001110
doi: 10.4049/jimmunol.2001110 pubmed: 33712518 pmcid: 8023146
Li D, Zhang J, Yang W, Li P, Ru Y, Kang W, Li L, Ran Y, Zheng H (2021b) African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. J Biol Chem 297(5):101190. https://doi.org/10.1016/j.jbc.2021.101190
doi: 10.1016/j.jbc.2021.101190 pubmed: 34517008 pmcid: 8526981
Li J, Song J, Kang L, Huang L, Zhou S, Hu L, Zheng J, Li C, Zhang X, He X, Zhao D, Bu Z, Weng C (2021c) pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS Pathogens 17(7):e1009733. https://doi.org/10.1371/journal.ppat.1009733
doi: 10.1371/journal.ppat.1009733 pubmed: 34310655 pmcid: 8341718
Li T, Zhao G, Zhang T, Zhang Z, Chen X, Song J, Wang X, Li J, Huang L, Wen L, Li C, Zhao D, He X, Bu Z, Zheng J, Weng C (2021d) African swine fever virus pE199L induces mitochondrial-dependent apoptosis. Viruses 13(11):2240. https://doi.org/10.3390/v13112240
doi: 10.3390/v13112240 pubmed: 34835046 pmcid: 8617669
Li L, Fu J, Li J, Guo S, Chen Q, Zhang Y, Liu Z, Tan C, Chen H, Wang X (2022) African swine fever virus pI215L inhibits type i interferon signaling by targeting interferon regulatory factor 9 for autophagic degradation. J Virol 96(17):e0094422. https://doi.org/10.1128/jvi.00944-22
doi: 10.1128/jvi.00944-22 pubmed: 35972295
Lin R, Heylbroeck C, Pitha PM, Hiscott J (1998) Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18(5):2986–2996. https://doi.org/10.1128/mcb.18.5.2986
doi: 10.1128/mcb.18.5.2986 pubmed: 9566918 pmcid: 110678
Lin R, Génin P, Mamane Y, Hiscott J (2000) Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 20(17):6342–6353. https://doi.org/10.1128/mcb.20.17.6342-6353.2000
doi: 10.1128/mcb.20.17.6342-6353.2000 pubmed: 10938111 pmcid: 86109
Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890. https://doi.org/10.1038/nature09121
doi: 10.1038/nature09121 pubmed: 20485341 pmcid: 2888693
Lithgow P, Takamatsu H, Werling D, Dixon L, Chapman D (2014) Correlation of cell surface marker expression with African swine fever virus infection. Vet Microbiol 168(2-4):413–419. https://doi.org/10.1016/j.vetmic.2013.12.001
doi: 10.1016/j.vetmic.2013.12.001 pubmed: 24398227 pmcid: 3969584
Liu S, Luo Y, Wang Y, Li S, Zhao Z, Bi Y, Sun J, Peng R, Song H, Zhu D, Sun Y, Li S, Zhang L, Wang W, Sun Y, Qi J, Yan J, Shi Y, Zhang X, Wang P, Qiu HJ, Gao GF (2019) Cryo-EM structure of the african swine fever virus. Cell Host microbe 26(6):836–843.e833. https://doi.org/10.1016/j.chom.2019.11.004
doi: 10.1016/j.chom.2019.11.004 pubmed: 31787524
Liu H, Zhu Z, Feng T, Ma Z, Xue Q, Wu P, Li P, Li S, Yang F, Cao W, Xue Z, Chen H, Liu X, Zheng H (2021a) African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 To block its activation. J Virol 95(18):e0082421. https://doi.org/10.1128/jvi.00824-21
doi: 10.1128/jvi.00824-21 pubmed: 34190598
Liu X, Ao D, Jiang S, Xia N, Xu Y, Shao Q, Luo J, Wang H, Zheng W, Chen N, Meurens F, Zhu J (2021b) African swine fever virus A528R inhibits TLR8 mediated NF-κB activity by targeting p65 activation and nuclear translocation. Viruses 13(10):2046. https://doi.org/10.3390/v13102046
doi: 10.3390/v13102046 pubmed: 34696476 pmcid: 8539517
Liu X, Liu H, Ye G, Xue M, Yu H, Feng C, Zhou Q, Liu X, Zhang L, Jiao S, Weng C, Huang L (2022) African swine fever virus pE301R negatively regulates cGAS-STING signaling pathway by inhibiting the nuclear translocation of IRF3. Vet Microbiol 274:109556. https://doi.org/10.1016/j.vetmic.2022.109556
doi: 10.1016/j.vetmic.2022.109556 pubmed: 36099692
Long X, Ortiz-Vega S, Lin Y, Avruch J (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280(25):23433–23436. https://doi.org/10.1074/jbc.C500169200
doi: 10.1074/jbc.C500169200 pubmed: 15878852
Luo J, Zhang J, Ni J, Jiang S, Xia N, Guo Y, Shao Q, Cao Q, Zheng W, Chen N, Zhang Q, Chen H, Chen Q, Zhu H, Meurens F, Zhu J (2022) The African swine fever virus protease pS273R inhibits DNA sensing cGAS-STING pathway by targeting IKKε. Virulence 13(1):740–756. https://doi.org/10.1080/21505594.2022.2065962
doi: 10.1080/21505594.2022.2065962 pubmed: 35437104 pmcid: 9067533
Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. https://doi.org/10.1038/nrm2672
doi: 10.1038/nrm2672 pubmed: 19339977
Ma Y, Li J, Dong H, Yang Z, Zhou L, Xu P (2022) PML body component Sp100A restricts wild-type herpes simplex virus 1 infection. J Virol 96(8):e0027922. https://doi.org/10.1128/jvi.00279-22
doi: 10.1128/jvi.00279-22 pubmed: 35353002
Maruri-Avidal L, Domi A, Weisberg AS, Moss B (2011) Participation of vaccinia virus l2 protein in the formation of crescent membranes and immature virions. J Virol 85(6):2504–2511. https://doi.org/10.1128/jvi.02505-10
doi: 10.1128/jvi.02505-10 pubmed: 21228235 pmcid: 3067936
Matamoros T, Alejo A, Rodríguez JM, Hernáez B, Guerra M, Fraile-Ramos A, Andrés G (2020) African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration. mBio 11(4):10–128. https://doi.org/10.1128/mBio.00789-20
doi: 10.1128/mBio.00789-20
McCrossan M, Windsor M, Ponnambalam S, Armstrong J, Wileman T (2001) The trans Golgi network is lost from cells infected with African swine fever virus. J Virol 75(23):11755–11765
pubmed: 11689656 pmcid: 114761 doi: 10.1128/JVI.75.23.11755-11765.2001
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15(2):87–103. https://doi.org/10.1038/nri3787
doi: 10.1038/nri3787 pubmed: 25614319 pmcid: 7162685
Meng X, Embry A, Rose L, Yan B, Xu C, Xiang Y (2012) Vaccinia virus A6 is essential for virion membrane biogenesis and localization of virion membrane proteins to sites of virion assembly. J Virol 86(10):5603–5613. https://doi.org/10.1128/jvi.00330-12
doi: 10.1128/jvi.00330-12 pubmed: 22398288 pmcid: 3347295
Merika M, Williams AJ, Chen G, Collins T, Thanos D (1998) Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol Cell 1(2):277–287. https://doi.org/10.1016/s1097-2765(00)80028-3
doi: 10.1016/s1097-2765(00)80028-3 pubmed: 9659924
Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5(5):503–507. https://doi.org/10.1038/ni1061
doi: 10.1038/ni1061 pubmed: 15064760
Mori M, Yoneyama M, Ito T, Takahashi K, Inagaki F, Fujita T (2004) Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J Biol Chem 279(11):9698–9702. https://doi.org/10.1074/jbc.M310616200
doi: 10.1074/jbc.M310616200 pubmed: 14703513
Mortimore GE, Hutson NJ, Surmacz CA (1983) Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci U S A 80(8):2179–2183. https://doi.org/10.1073/pnas.80.8.2179
doi: 10.1073/pnas.80.8.2179 pubmed: 6340116 pmcid: 393781
Moura Nunes JF, Vigário JD, Terrinha AM (1975) Ultrastructural study of African swine fever virus replication in cultures of swine bone marrow cells. Arch Virol 49:59–66
doi: 10.1007/BF02175596
Müller S, Dejean A (1999) Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73(6):5137–5143. https://doi.org/10.1128/jvi.73.6.5137-5143.1999
doi: 10.1128/jvi.73.6.5137-5143.1999 pubmed: 10233977 pmcid: 112559
Muñoz-Moreno R, Barrado-Gil L, Galindo I, Alonso C (2015) Analysis of HDAC6 and BAG3-aggresome pathways in African swine fever viral factory formation. Viruses 7(4):1823–1831. https://doi.org/10.3390/v7041823
doi: 10.3390/v7041823 pubmed: 25856634 pmcid: 4411678
Munoz-Moreno R, Cuesta-Geijo MA, Martinez-Romero C, Barrado-Gil L, Galindo I, Garcia-Sastre A, Alonso C (2016) Antiviral role of IFITM proteins in African swine fever virus infection. PloS one 11(4):e0154366. https://doi.org/10.1371/journal.pone.0154366
doi: 10.1371/journal.pone.0154366 pubmed: 27116236 pmcid: 4846163
Neilan JG, Lu Z, Kutish GF, Zsak L, Burrage TG, Borca MV, Carrillo C, Rock DL (1997) A BIR motif containing gene of African swine fever virus, 4CL, is nonessential for growth in vitro and viral virulence. Virology 230:252–264
pubmed: 9143281 doi: 10.1006/viro.1997.8481
Neilan JG, Borca MV, Lu Z, Kutish GF, Kleiboeker SB, Carrillo C, Zsak L, Rock DL (1999) An African swine fever virus ORF with similarity to C-type lectins is non-essential for growth in swine macrophages in vitro and for virus virulence in domestic swine. J Gen Virol 80(Pt 10):2693–2697. https://doi.org/10.1099/0022-1317-80-10-2693
doi: 10.1099/0022-1317-80-10-2693 pubmed: 10573162
Netherton CL, Wileman TE (2013) African swine fever virus organelle rearrangements. Virus Res 173(1):76–86. https://doi.org/10.1016/j.virusres.2012.12.014
doi: 10.1016/j.virusres.2012.12.014 pubmed: 23291273
Netherton CL, McCrossan MC, Denyer M, Ponnambalam S, Armstrong J, Takamatsu HH, Wileman TE (2006) African swine fever virus causes microtubule-dependent dispersal of the trans-golgi network and slows delivery of membrane protein to the plasma membrane. J Virol 80(22):11385–11392. https://doi.org/10.1128/jvi.00439-06
doi: 10.1128/jvi.00439-06 pubmed: 16956944 pmcid: 1642160
Netherton CL, Simpson J, Haller O, Wileman TE, Takamatsu HH, Monaghan P, Taylor G (2009) Inhibition of a large double-stranded DNA virus by MxA protein. J Virol 83(5):2310–2320. https://doi.org/10.1128/jvi.00781-08
doi: 10.1128/jvi.00781-08 pubmed: 19109387
Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966. https://doi.org/10.1074/jbc.273.7.3963
doi: 10.1074/jbc.273.7.3963 pubmed: 9461583
Nogal ML, González de Buitrago G, Rodríguez C, Cubelos B, Carrascosa AL, Salas ML, Revilla Y (2001) African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol 75(6):2535–2543. https://doi.org/10.1128/jvi.75.6.2535-2543.2001
doi: 10.1128/jvi.75.6.2535-2543.2001 pubmed: 11222676 pmcid: 115875
Nunes-Correia I, Rodríguez JM, Eulálio A, Carvalho AL, Citovsky V, Simões S, Faro C, Salas ML, Pedroso de Lima MC (2008) African swine fever virus p10 protein exhibits nuclear import capacity and accumulates in the nucleus during viral infection. Vet Microbiol 130(1-2):47–59. https://doi.org/10.1016/j.vetmic.2007.12.010
doi: 10.1016/j.vetmic.2007.12.010 pubmed: 18243588
Oura CAL, Powell PP, Parkhouse RME (1998) African swine fever: a disease characterized by apoptosis. J General Virol 79:1427–1438
doi: 10.1099/0022-1317-79-6-1427
Panne D, McWhirter SM, Maniatis T, Harrison SC (2007) Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch. J Biol Chem 282(31):22816–22822. https://doi.org/10.1074/jbc.M703019200
doi: 10.1074/jbc.M703019200 pubmed: 17526488
Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998. https://doi.org/10.1074/jbc.275.2.992
doi: 10.1074/jbc.275.2.992 pubmed: 10625637
Petrovan V, Rathakrishnan A, Islam M, Goatley LC, Moffat K, Sanchez-Cordon PJ, Reis AL, Dixon LK (2021) Role of African swine fever virus (ASFV) proteins EP153R and EP402R in reducing viral persistence in blood and virulence in pigs infected with BeninΔDP148R. J Virol 96(1):e01340-21. https://doi.org/10.1128/jvi.01340-21
doi: 10.1128/jvi.01340-21 pubmed: 34643433
Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, Schiavo G, Reis e Sousa C (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83(20):10761–10769. https://doi.org/10.1128/jvi.00770-09
doi: 10.1128/jvi.00770-09 pubmed: 19656871 pmcid: 2753146
Platanitis E, Demiroz D, Schneller A, Fischer K, Capelle C, Hartl M, Gossenreiter T, Müller M, Novatchkova M, Decker T (2019) A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nat Commun 10(1):2921. https://doi.org/10.1038/s41467-019-10970-y
doi: 10.1038/s41467-019-10970-y pubmed: 31266943 pmcid: 6606597
Popescu L, Gaudreault NN, Whitworth KM, Murgia MV, Nietfeld JC, Mileham A, Samuel M, Wells KD, Prather RS, Rowland RRR (2017) Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology 501:102–106. https://doi.org/10.1016/j.virol.2016.11.012
doi: 10.1016/j.virol.2016.11.012 pubmed: 27898335
Powell PP, Dixon LK, Parkhouse RME (1996) An IkB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J Virol 70(12):8527–8533
pubmed: 8970976 pmcid: 190944 doi: 10.1128/jvi.70.12.8527-8533.1996
Quemin ER, Corroyer-Dulmont S, Krijnse-Locker J (2018) Entry and disassembly of large DNA viruses: electron microscopy leads the way. J Mol Biol 430(12):1714–1724. https://doi.org/10.1016/j.jmb.2018.04.019
doi: 10.1016/j.jmb.2018.04.019 pubmed: 29702107
Quetglas JI, Hernáez B, Galindo I, Muñoz-Moreno R, Cuesta-Geijo MA, Alonso C (2012) Small rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection. J Virol 86(3):1758–1767. https://doi.org/10.1128/jvi.05666-11
doi: 10.1128/jvi.05666-11 pubmed: 22114329 pmcid: 3264358
Rajsbaum R, García-Sastre A, Versteeg GA (2014) TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 426(6):1265–1284. https://doi.org/10.1016/j.jmb.2013.12.005
doi: 10.1016/j.jmb.2013.12.005 pubmed: 24333484
Ramirez-Medina E, Vuono EA, Pruitt S, Rai A, Espinoza N, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP (2022) Deletion of African swine fever virus histone-like protein, A104R from the georgia isolate drastically reduces virus virulence in domestic pigs. Viruses 14(5):1112. https://doi.org/10.3390/v14051112
doi: 10.3390/v14051112 pubmed: 35632853 pmcid: 9146580
Ramiro-Ibáñez F, Ortega A, Brun A, Escribano JM, Alonso C (1996) Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection. J General Virol 77:2209–2219
doi: 10.1099/0022-1317-77-9-2209
Ran Y, Li D, Xiong MG, Liu HN, Feng T, Shi ZW, Li YH, Wu HN, Wang SY, Zheng HX, Wang YY (2022) African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLoS Pathogens 18(1):e1010270. https://doi.org/10.1371/journal.ppat.1010270
doi: 10.1371/journal.ppat.1010270 pubmed: 35089988 pmcid: 8827485
Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89(Pt 1):1–47. https://doi.org/10.1099/vir.0.83391-0
doi: 10.1099/vir.0.83391-0 pubmed: 18089727
Rautureau GJ, Yabal M, Yang H, Huang DC, Kvansakul M, Hinds MG (2012) The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 protein antagonist. Cell Death Dis 3(12):e443. https://doi.org/10.1038/cddis.2012.178
doi: 10.1038/cddis.2012.178 pubmed: 23235460 pmcid: 3542614
Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140(3):397–408. https://doi.org/10.1016/j.cell.2010.01.020
doi: 10.1016/j.cell.2010.01.020 pubmed: 20144762
Resch W, Weisberg AS, Moss B (2005) Vaccinia virus nonstructural protein encoded by the A11R gene is required for formation of the virion membrane. J Virol 79(11):6598–6609. https://doi.org/10.1128/jvi.79.11.6598-6609.2005
doi: 10.1128/jvi.79.11.6598-6609.2005 pubmed: 15890898 pmcid: 1112135
Revilla Y, Cebrián A, Baixerás E, Martínez-A C, Viñuela E, Salas ML (1997) Inhibition of apoptosis by the African swine fever virus bcl-2 homologue: role of the BH1 domains. Virology 228:400–404. https://doi.org/10.1006/viro.1996.8395
doi: 10.1006/viro.1996.8395 pubmed: 9123849
Revilla Y, Callejo M, Rodríguez JM, Culebras E, Nogal ML, Salas ML, Viñuela E, Fresno M (1998) Inhibition of nuclear factor kappaB activation by a virus-encoded IkappaB-like protein. J Biol Chem 273(9):5405–5411. https://doi.org/10.1074/jbc.273.9.5405
doi: 10.1074/jbc.273.9.5405 pubmed: 9479002
Riera E, García-Belmonte R, Madrid R, Pérez-Núñez D, Revilla Y (2022) African swine fever virus ubiquitin-conjugating enzyme pI215L inhibits IFN-I signaling pathway through STAT2 degradation. Front Microbiol 13:1081035. https://doi.org/10.3389/fmicb.2022.1081035
doi: 10.3389/fmicb.2022.1081035 pubmed: 36713190
Rodríguez JR, Risco C, Carrascosa JL, Esteban M, Rodríguez D (1997) Characterization of early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton protein and a newly identified 15-kilodalton envelope protein. J Virol 71(3):1821–1833. https://doi.org/10.1128/jvi.71.3.1821-1833.1997
doi: 10.1128/jvi.71.3.1821-1833.1997 pubmed: 9032312 pmcid: 191252
Rodríguez JR, Risco C, Carrascosa JL, Esteban M, Rodríguez D (1998) Vaccinia virus 15-kilodalton (A14L) protein is essential for assembly and attachment of viral crescents to virosomes. J Virol 72(2):1287–1296. https://doi.org/10.1128/jvi.72.2.1287-1296.1998
doi: 10.1128/jvi.72.2.1287-1296.1998 pubmed: 9445029 pmcid: 124607
Rodríguez JM, García-Escudero R, Salas ML, Andrés G (2004) African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites. J Virol 78(8):4299–1313
pubmed: 15047843 pmcid: 374266 doi: 10.1128/JVI.78.8.4299-4313.2004
Rodríguez I, Redrejo-Rodríguez M, Rodríguez JM, Alejo A, Salas J, Salas ML (2006) African swine fever virus pB119L protein is a flavin adenine dinucleotide-linked sulfhydryl oxidase. J Virol 80(7):3157–3166. https://doi.org/10.1128/jvi.80.7.3157-3166.2006
doi: 10.1128/jvi.80.7.3157-3166.2006 pubmed: 16537584 pmcid: 1440384
Rodríguez I, Nogal ML, Redrejo-Rodríguez M, Bustos MJ, Salas ML (2009) The African swine fever virus virion membrane protein pE248R is required for virus infectivity and an early postentry event. J Virol 83(23):12290–12300. https://doi.org/10.1128/jvi.01333-09
doi: 10.1128/jvi.01333-09 pubmed: 19793823 pmcid: 2786719
Rojo G, Chamorro M, Salas ML, Viñuela E, Cuezva JM, Salas J (1998) Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. J Virol 72(9):7583–7588
pubmed: 9696857 pmcid: 110008 doi: 10.1128/JVI.72.9.7583-7588.1998
Rojo G, García-Beato R, Viñuela E, Salas ML, Salas J (1999) Replication of African swine fever virus DNA in infected cells. Virology 257:524–536
pubmed: 10329562 doi: 10.1006/viro.1999.9704
Rosa-Calatrava M, Puvion-Dutilleul F, Lutz P, Dreyer D, de Thé H, Chatton B, Kedinger C (2003) Adenovirus protein IX sequesters host-cell promyelocytic leukaemia protein and contributes to efficient viral proliferation. EMBO Rep 4(10):969–975. https://doi.org/10.1038/sj.embor.embor943
doi: 10.1038/sj.embor.embor943 pubmed: 14528266 pmcid: 1326401
Rouiller I, Brookes SM, Hyatt AD, Windsor M, Wileman T (1998) African swine fever virus is wrapped by the endoplasmic reticulum. J Virol 72(3):2373–2387
pubmed: 9499098 pmcid: 109537 doi: 10.1128/JVI.72.3.2373-2387.1998
Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106(49):20842–20846. https://doi.org/10.1073/pnas.0911267106
doi: 10.1073/pnas.0911267106 pubmed: 19926846 pmcid: 2791563
Sánchez EG, Quintas A, Pérez-Núñez D, Nogal M, Barroso S, Carrascosa ÁL, Revilla Y (2012) African swine fever virus uses macropinocytosis to enter host cells. PLoS pathogens 8(6):e1002754. https://doi.org/10.1371/journal.ppat.1002754
doi: 10.1371/journal.ppat.1002754 pubmed: 22719252 pmcid: 3375293
Sánchez-Torres C, Gómez-Puertas P, Gómez-del-Moral M, Alonso F, Escribano JM, Ezquerra A, Domínguez J (2003) Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol 148(12):2307–2323. https://doi.org/10.1007/s00705-003-0188-4
doi: 10.1007/s00705-003-0188-4 pubmed: 14648288
Sang Y, Rowland RR, Hesse RA, Blecha F (2010) Differential expression and activity of the porcine type I interferon family. Physiol Genomics 42(2):248–258. https://doi.org/10.1152/physiolgenomics.00198.2009
doi: 10.1152/physiolgenomics.00198.2009 pubmed: 20406849
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. https://doi.org/10.1126/science.1106148
doi: 10.1126/science.1106148 pubmed: 15718470
Satheshkumar PS, Weisberg A, Moss B (2009) Vaccinia virus H7 protein contributes to the formation of crescent membrane precursors of immature virions. J Virol 83(17):8439–8450. https://doi.org/10.1128/jvi.00877-09
doi: 10.1128/jvi.00877-09 pubmed: 19553304 pmcid: 2738178
Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, Tanaka N (1998) Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 441(1):106–110. https://doi.org/10.1016/s0014-5793(98)01514-2
doi: 10.1016/s0014-5793(98)01514-2 pubmed: 9877175
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472(7344):481–485. https://doi.org/10.1038/nature09907
doi: 10.1038/nature09907 pubmed: 21478870 pmcid: 3409588
Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2):310–322. https://doi.org/10.1016/j.molcel.2010.09.026
doi: 10.1016/j.molcel.2010.09.026 pubmed: 20965424 pmcid: 2993060
Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682. https://doi.org/10.1016/j.cell.2005.08.012
doi: 10.1016/j.cell.2005.08.012 pubmed: 16125763
Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X (2019) Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 567(7748):389–393. https://doi.org/10.1038/s41586-019-0998-5
doi: 10.1038/s41586-019-0998-5 pubmed: 30842659 pmcid: 6859894
Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300(5622):1148–1151. https://doi.org/10.1126/science.1081315
doi: 10.1126/science.1081315 pubmed: 12702806
She ZY, Pan MY, Tan FQ, Yang WX (2017) Minus end-directed kinesin-14 KIFC1 regulates the positioning and architecture of the Golgi apparatus. Oncotarget 8(22):36469–36483. https://doi.org/10.18632/oncotarget.16863
doi: 10.18632/oncotarget.16863 pubmed: 28430595 pmcid: 5482669
Shi J, Liu W, Zhang M, Sun J, Xu X (2021) The A179L gene of African swine fever virus suppresses virus-induced apoptosis but enhances necroptosis. Viruses 13(12):2490. https://doi.org/10.3390/v13122490
doi: 10.3390/v13122490 pubmed: 34960759 pmcid: 8708531
Shimmon GL, Hui JYK, Wileman TE, Netherton CL (2021) Autophagy impairment by African swine fever virus. J Gen Virol 102(8):001637. https://doi.org/10.1099/jgv.0.001637
doi: 10.1099/jgv.0.001637 pubmed: 34406116 pmcid: 8513644
Simões M, Martins C, Ferreira F (2015a) Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus. Virus Res 210:1–7. https://doi.org/10.1016/j.virusres.2015.07.006
doi: 10.1016/j.virusres.2015.07.006 pubmed: 26183880
Simões M, Rino J, Pinheiro I, Martins C, Ferreira F (2015b) Alterations of nuclear architecture and epigenetic signatures during African swine fever virus infection. Viruses 7(9):4978–4996. https://doi.org/10.3390/v7092858
doi: 10.3390/v7092858 pubmed: 26389938 pmcid: 4584302
Song G, Liu B, Li Z, Wu H, Wang P, Zhao K, Jiang G, Zhang L, Gao C (2016) E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1. Nat Immunol 17(12):1342–1351. https://doi.org/10.1038/ni.3588
doi: 10.1038/ni.3588 pubmed: 27776110
Song J, Li K, Li T, Zhao G, Zhou S, Li H, Li J, Weng C (2020) Screening of PRRSV- and ASFV-encoded proteins involved in the inflammatory response using a porcine iGLuc reporter. J Virol Methods 285:113958. https://doi.org/10.1016/j.jviromet.2020.113958
doi: 10.1016/j.jviromet.2020.113958 pubmed: 32827600
Soppina V, Rai AK, Ramaiya AJ, Barak P, Mallik R (2009) Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad Sci U S A 106(46):19381–19386. https://doi.org/10.1073/pnas.0906524106
doi: 10.1073/pnas.0906524106 pubmed: 19864630 pmcid: 2770008
Stefanovic S, Windsor M, Nagata KI, Inagaki M, Wileman T (2005) Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J Virol 79(18):11766–11775. https://doi.org/10.1128/jvi.79.18.11766-11775.2005
doi: 10.1128/jvi.79.18.11766-11775.2005 pubmed: 16140754 pmcid: 1212593
Suárez C, Gutiérrez-Berzal J, Andrés G, Salas ML, Rodríguez JM (2010a) African swine fever virus protein p17 is essential for the progression of viral membrane precursors toward icosahedral intermediates. J Virol 84(15):7484–7499. https://doi.org/10.1128/jvi.00600-10
doi: 10.1128/jvi.00600-10 pubmed: 20504920 pmcid: 2897610
Suárez C, Salas ML, Rodríguez JM (2010b) African swine fever virus polyprotein pp62 is essential for viral core development. J Virol 84(1):176–187. https://doi.org/10.1128/jvi.01858-09
doi: 10.1128/jvi.01858-09 pubmed: 19846532
Suarez C, Andres G, Kolovou A, Hoppe S, Salas ML, Walther P, Krijnse Locker J (2015) African swine fever virus assembles a single membrane derived from rupture of the endoplasmic reticulum. Cell Microbiol 17(11):1683–1698. https://doi.org/10.1111/cmi.12468
doi: 10.1111/cmi.12468 pubmed: 26096327
Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791. https://doi.org/10.1126/science.1232458
doi: 10.1126/science.1232458 pubmed: 23258413
Sun M, Yu S, Ge H, Wang T, Li Y, Zhou P, Pan L, Han Y, Yang Y, Sun Y, Li S, Li LF, Qiu HJ (2022) The A137R protein of African swine fever virus inhibits type I interferon production via the autophagy-mediated lysosomal degradation of TBK1. J Virol 96(9):e0195721. https://doi.org/10.1128/jvi.01957-21
doi: 10.1128/jvi.01957-21 pubmed: 35412346
Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F (2003) X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Biol 10(11):922–927. https://doi.org/10.1038/nsb1001
doi: 10.1038/nsb1001 pubmed: 14555995
Traenckner EB, Pahl HL, Henkel T, Schmidt KN, Wilk S, Baeuerle PA (1995) Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. Embo j 14(12):2876–2883. https://doi.org/10.1002/j.1460-2075.1995.tb07287.x
doi: 10.1002/j.1460-2075.1995.tb07287.x pubmed: 7796813 pmcid: 398406
Traktman P, Caligiuri A, Jesty SA, Liu K, Sankar U (1995) Temperature-sensitive mutants with lesions in the vaccinia virus F10 kinase undergo arrest at the earliest stage of virion morphogenesis. J Virol 69(10):6581–6587. https://doi.org/10.1128/jvi.69.10.6581-6587.1995
doi: 10.1128/jvi.69.10.6581-6587.1995 pubmed: 7666563 pmcid: 189564
Valdeira ML, Geraldes A (1985) Morphological study on the entry of ASFV into cells. Biol Cell 55:35–40
pubmed: 2937495 doi: 10.1111/j.1768-322X.1985.tb00407.x
Verhalen B, Justice JL, Imperiale MJ, Jiang M (2015) Viral DNA replication-dependent DNA damage response activation during BK polyomavirus infection. J Virol 89(9):5032–5039. https://doi.org/10.1128/jvi.03650-14
doi: 10.1128/jvi.03650-14 pubmed: 25694603 pmcid: 4403456
Vydelingum S, Baylis SA, Bristow C, Smith GL, Dixon LK (1993) Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. J Gen Virol 74:2125–2130. https://doi.org/10.1099/0022-1317-74-10-2125
doi: 10.1099/0022-1317-74-10-2125 pubmed: 8409937
Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844):346–351. https://doi.org/10.1038/35085597
doi: 10.1038/35085597 pubmed: 11460167
Wang X, Wu J, Wu Y, Chen H, Zhang S, Li J, Xin T, Jia H, Hou S, Jiang Y, Zhu H, Guo X (2018) Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1. Biochem Biophys Res Commun 506(3):437–443. https://doi.org/10.1016/j.bbrc.2018.10.103
doi: 10.1016/j.bbrc.2018.10.103 pubmed: 30348523
Wang N, Zhao D, Wang J, Zhang Y, Wang M, Gao Y, Li F, Wang J, Bu Z, Rao Z, Wang X (2019) Architecture of African swine fever virus and implications for viral assembly. Science 366(6465):640–644. https://doi.org/10.1126/science.aaz1439
doi: 10.1126/science.aaz1439 pubmed: 31624094
Wang Y, Cui S, Xin T, Wang X, Yu H, Chen S, Jiang Y, Gao X, Jiang Y, Guo X, Jia H, Zhu H (2021) African swine fever virus MGF360-14L negatively regulates type I interferon signaling by targeting IRF3. Front Cell Infect Microbiol 11:818969. https://doi.org/10.3389/fcimb.2021.818969
doi: 10.3389/fcimb.2021.818969 pubmed: 35096660
Wang Q, Zhou L, Wang J, Su D, Li D, Du Y, Yang G, Zhang G, Chu B (2022) African swine fever virus K205R induces ER stress and consequently activates autophagy and the NF-κB signaling pathway. Viruses 14(2):394. https://doi.org/10.3390/v14020394
doi: 10.3390/v14020394 pubmed: 35215987 pmcid: 8880579
Weller SG, Capitani M, Cao H, Micaroni M, Luini A, Sallese M, McNiven MA (2010) Src kinase regulates the integrity and function of the Golgi apparatus via activation of dynamin 2. Proc Natl Acad Sci U S A 107(13):5863–5868. https://doi.org/10.1073/pnas.0915123107
doi: 10.1073/pnas.0915123107 pubmed: 20231454 pmcid: 2851890
Wilkinson DE, Weller SK (2006) Herpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection. J Cell Sci 119(Pt 13):2695–2703. https://doi.org/10.1242/jcs.02981
doi: 10.1242/jcs.02981 pubmed: 16757521
Windsor M, Hawes P, Monaghan P, Snapp E, Salas ML, Rodríguez JM, Wileman T (2012) Mechanism of collapse of endoplasmic reticulum cisternae during African swine fever virus infection. Traffic 13(1):30–42. https://doi.org/10.1111/j.1600-0854.2011.01293.x
doi: 10.1111/j.1600-0854.2011.01293.x pubmed: 21951707
Wöhnke E, Fuchs W, Hartmann L, Blohm U, Blome S, Mettenleiter TC, Karger A (2021) Comparison of the proteomes of porcine macrophages and a stable porcine cell line after infection with african swine fever virus. Viruses 13(11):2198. https://doi.org/10.3390/v13112198
doi: 10.3390/v13112198 pubmed: 34835004 pmcid: 8620826
Xia N, Wang H, Liu X, Shao Q, Ao D, Xu Y, Jiang S, Luo J, Zhang J, Chen N, Meurens F, Zheng W, Zhu J (2020) African swine fever virus structural protein p17 inhibits cell proliferation through ER stress-ROS mediated cell cycle arrest. Viruses 13(1):21. https://doi.org/10.3390/v13010021
doi: 10.3390/v13010021 pubmed: 33374251 pmcid: 7823474
Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, Wu H (2011) Crystal structure of inhibitor of κB kinase β. Nature 472(7343):325–330. https://doi.org/10.1038/nature09853
doi: 10.1038/nature09853 pubmed: 21423167 pmcid: 3081413
Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301(5633):640–643. https://doi.org/10.1126/science.1087262
doi: 10.1126/science.1087262 pubmed: 12855817
Yáñez RJ, Rodríguez JM, Nogal ML, Yuste L, Enríquez C, Rodríguez JF, Viñuela E (1995) Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208:259–278
doi: 10.1006/viro.1995.1149
Yang J, Li S, Feng T, Zhang X, Yang F, Cao W, Chen H, Liu H, Zhang K, Zhu Z, Zheng H (2021a) African swine fever virus F317L protein inhibits NF-κB activation to evade host immune response and promote viral replication. mSphere 6(5):e0065821. https://doi.org/10.1128/mSphere.00658-21
doi: 10.1128/mSphere.00658-21 pubmed: 34668754
Yang K, Huang Q, Wang R, Zeng Y, Cheng M, Xue Y, Shi C, Ye L, Yang W, Jiang Y, Wang J, Huang H, Cao X, Yang G, Wang C (2021b) African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway. Vet Microbiol 263:109265. https://doi.org/10.1016/j.vetmic.2021.109265
doi: 10.1016/j.vetmic.2021.109265 pubmed: 34710767
Yang K, Xue Y, Niu H, Shi C, Cheng M, Wang J, Zou B, Wang J, Niu T, Bao M, Yang W, Zhao D, Jiang Y, Yang G, Zeng Y, Cao X, Wang C (2022a) African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production. Vet Res 53(1):7. https://doi.org/10.1186/s13567-022-01025-0
doi: 10.1186/s13567-022-01025-0 pubmed: 35073979 pmcid: 8785597
Yang K, Xue Y, Niu T, Li X, Cheng M, Bao M, Zou B, Shi C, Wang J, Yang W, Wang N, Jiang Y, Yang G, Zeng Y, Cao X, Wang C (2022b) African swine fever virus MGF505-7R protein interacted with IRF7and TBK1 to inhibit type I interferon production. Virus Res 322:198931. https://doi.org/10.1016/j.virusres.2022.198931
doi: 10.1016/j.virusres.2022.198931 pubmed: 36130654
Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276(17):13935–13940. https://doi.org/10.1074/jbc.M010677200
doi: 10.1074/jbc.M010677200 pubmed: 11278723
Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T (1998) Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. Embo J 17(4):1087–1095. https://doi.org/10.1093/emboj/17.4.1087
doi: 10.1093/emboj/17.4.1087 pubmed: 9463386 pmcid: 1170457
Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737. https://doi.org/10.1038/ni1087
doi: 10.1038/ni1087 pubmed: 15208624
Yoshida R, Takaesu G, Yoshida H, Okamoto F, Yoshioka T, Choi Y, Akira S, Kawai T, Yoshimura A, Kobayashi T (2008) TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase antiviral pathway. J Biol Chem 283(52):36211–36220. https://doi.org/10.1074/jbc.M806576200
doi: 10.1074/jbc.M806576200 pubmed: 18984593 pmcid: 2662295
Zamorano Cuervo N, Osseman Q, Grandvaux N (2018) Virus infection triggers MAVS polymers of distinct molecular weight. Viruses 10(2):56. https://doi.org/10.3390/v10020056
doi: 10.3390/v10020056 pubmed: 29385716 pmcid: 5850363
Zanotti C, Razzuoli E, Crooke H, Soule O, Pezzoni G, Ferraris M, Ferrari A, Amadori M (2015) Differential biological activities of swine interferon-α subtypes. J Interferon Cytokine Res: the official journal of the International Society for Interferon and Cytokine Research 35(12):990–1002. https://doi.org/10.1089/jir.2015.0076
doi: 10.1089/jir.2015.0076
Zeng W, Xu M, Liu S, Sun L, Chen ZJ (2009) Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 36(2):315–325. https://doi.org/10.1016/j.molcel.2009.09.037
doi: 10.1016/j.molcel.2009.09.037 pubmed: 19854139 pmcid: 2779157
Zhang F, Moon A, Childs K, Goodbourn S, Dixon LK (2010) The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection. J Virol 84(20):10681–10689. https://doi.org/10.1128/jvi.01027-10
doi: 10.1128/jvi.01027-10 pubmed: 20702639 pmcid: 2950568
Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z, Brautigam CA, Zhang X, Chen ZJ (2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6(3):421–430. https://doi.org/10.1016/j.celrep.2014.01.003
doi: 10.1016/j.celrep.2014.01.003 pubmed: 24462292 pmcid: 3969844
Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ (2019) Structural basis of STING binding with and phosphorylation by TBK1. Nature 567(7748):394–398. https://doi.org/10.1038/s41586-019-1000-2
doi: 10.1038/s41586-019-1000-2 pubmed: 30842653 pmcid: 6862768
Zhang K, Wang S, Gou H, Zhang J, Li C (2021) Crosstalk between autophagy and the cGAS-STING signaling pathway in Type I interferon production. Front Cell Dev Biol 9:748485. https://doi.org/10.3389/fcell.2021.748485
doi: 10.3389/fcell.2021.748485 pubmed: 34926445 pmcid: 8678597
Zhang K, Yang B, Shen C, Zhang T, Hao Y, Zhang D, Liu H, Shi X, Li G, Yang J, Li D, Zhu Z, Tian H, Yang F, Ru Y, Cao WJ, Guo J, He J, Zheng H, Liu X (2022) MGF360-9L is a major virulence factor associated with the african swine fever virus by antagonizing the JAK/STAT signaling pathway. mBio 13(1):e0233021. https://doi.org/10.1128/mbio.02330-21
doi: 10.1128/mbio.02330-21 pubmed: 35076286
Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell SL, Liu M, Lei Y, Gao X, Fu X, Zhu F, Liu Y, Laganowsky A, Zheng X, Ji JY, West AP, Watson RO, Li P (2019) A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature 569(7758):718–722. https://doi.org/10.1038/s41586-019-1228-x
doi: 10.1038/s41586-019-1228-x pubmed: 31118511 pmcid: 6596994
Zhao G, Li T, Liu X, Zhang T, Zhang Z, Kang L, Song J, Zhou S, Chen X, Wang X, Li J, Huang L, Li C, Bu Z, Zheng J, Weng C (2022) African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J Biol Chem 298(1):101480. https://doi.org/10.1016/j.jbc.2021.101480
doi: 10.1016/j.jbc.2021.101480 pubmed: 34890644
Zheng W, Xia N, Zhang J, Cao Q, Jiang S, Luo J, Wang H, Chen N, Zhang Q, Meurens F, Zhu J (2022) African swine fever virus structural protein p17 inhibits cGAS-STING signaling pathway through interacting With STING. Front Immunol 13:941579. https://doi.org/10.3389/fimmu.2022.941579
doi: 10.3389/fimmu.2022.941579 pubmed: 35844609 pmcid: 9283692
Zhou P, Dai J, Zhang K, Wang T, Li LF, Luo Y, Sun Y, Qiu HJ, Li S (2022) The H240R protein of african swine fever virus inhibits interleukin 1β production by inhibiting NEMO expression and NLRP3 oligomerization. J Virol 96(22):e0095422. https://doi.org/10.1128/jvi.00954-22
doi: 10.1128/jvi.00954-22 pubmed: 36326277
Zhu Z, Li S, Ma C, Yang F, Cao W, Liu H, Chen X, Feng T, Shi Z, Tian H, Zhang K, Chen H, Liu X, Zheng H (2023) African swine fever virus E184L protein interacts with innate immune adaptor STING to block IFN production for viral replication and pathogenesis. J Immunol 210(4):442–458. https://doi.org/10.4049/jimmunol.2200357
doi: 10.4049/jimmunol.2200357 pubmed: 36602826
Zhuo Y, Guo Z, Ba T, Zhang C, He L, Zeng C, Dai H (2021) African swine fever virus MGF360-12L inhibits type I interferon production by blocking the interaction of importin α and NF-κB signaling pathway. Virol Sin 36(2):176–186. https://doi.org/10.1007/s12250-020-00304-4
doi: 10.1007/s12250-020-00304-4 pubmed: 33141406

Auteurs

Christopher L Netherton (CL)

The Pirbright Institute, Woking, UK. christopher.netherton@pirbright.ac.uk.

Gareth L Shimmon (GL)

The Pirbright Institute, Woking, UK.

Joshua Y K Hui (JYK)

The Pirbright Institute, Woking, UK.

Samuel Connell (S)

The Pirbright Institute, Woking, UK.

Ana Luisa Reis (AL)

The Pirbright Institute, Woking, UK.

Classifications MeSH