TMT-based proteomics analysis of sea urchin (Strongylocentrotus intermedius) under high temperature stress.
Heat stress
Proteomics
S. intermedius
TMT
Journal
Comparative biochemistry and physiology. Part D, Genomics & proteomics
ISSN: 1878-0407
Titre abrégé: Comp Biochem Physiol Part D Genomics Proteomics
Pays: Netherlands
ID NLM: 101270611
Informations de publication
Date de publication:
25 Dec 2023
25 Dec 2023
Historique:
received:
07
09
2023
revised:
18
12
2023
accepted:
20
12
2023
medline:
2
1
2024
pubmed:
2
1
2024
entrez:
30
12
2023
Statut:
aheadofprint
Résumé
In the context of global warming and continuous high temperatures in the northern part of China in summer, the mortality rate of Strongylocentrotus intermedius through the summer reaches 70-80 %. The protein regulatory mechanism of S. intermedius in response to high temperature stress is still unclear. In order to investigate the protein expression of S. intermedius under high temperature stress, the study was conducted with the high-temperature resistant strain of S. intermedius and the control group of S. intermedius. Tandem Mass Tag (TMT) tagging technique was applied to resolve the protein expression profile of S. intermedius in response to high temperature stress. The results showed that, compared to 15 °C,136 DEPs were screened in high-temperature resistant strain groups of S. intermedius under high temperature stress and 87 DEPs were screened in the control group of S. intermedius. There were 33 common differential proteins in the two groups, such as APOLP, HSP 70, CDC37 and CALM. Further Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses revealed that the up-regulated proteins CALM and HSP70 are significantly enriched in the "Phosphatidylinositol signaling system" and "Protein processing in endoplasmic reticulum" in heat-tolerant S. intermedius strains under high temperature stress. The control group of S. intermedius DEPs were significantly enriched in protein processing in the endoplasmic reticulum. These results provide a theoretical basis for the molecular mechanism of sea urchin heat tolerance and fundamental data for sea urchin selection and breeding for high temperature tolerance.
Identifiants
pubmed: 38159402
pii: S1744-117X(23)00131-4
doi: 10.1016/j.cbd.2023.101186
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
101186Informations de copyright
Copyright © 2023 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.