Overcoming therapeutic resistance in oncolytic herpes virotherapy by targeting IGF2BP3-induced NETosis in malignant glioma.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
02 Jan 2024
02 Jan 2024
Historique:
received:
22
06
2023
accepted:
20
12
2023
medline:
4
1
2024
pubmed:
4
1
2024
entrez:
3
1
2024
Statut:
epublish
Résumé
Oncolytic virotherapy holds promise for cancer treatment, but the factors determining its oncolytic activity remain unclear. Neutrophil extracellular traps (NETs) are associated with cancer progression, yet their formation mechanism and role in oncolytic virotherapy remain elusive. In this study, we demonstrate that, in glioma, upregulation of IGF2BP3 enhances the expression of E3 ubiquitin protein ligase MIB1, promoting FTO degradation via the ubiquitin-proteasome pathway. This results in increased m6A-mediated CSF3 release and NET formation. Oncolytic herpes simplex virus (oHSV) stimulates IGF2BP3-induced NET formation in malignant glioma. In glioma models in female mice, a BET inhibitor enhances the oncolytic activity of oHSV by impeding IGF2BP3-induced NETosis, reinforcing virus replication through BRD4 recruitment with the CDK9/RPB-1 complex to HSV gene promoters. Our findings unveil the regulation of m6A-mediated NET formation, highlight oncolytic virus-induced NETosis as a critical checkpoint hindering oncolytic potential, and propose targeting NETosis as a strategy to overcome resistance in oncolytic virotherapy.
Identifiants
pubmed: 38167409
doi: 10.1038/s41467-023-44576-2
pii: 10.1038/s41467-023-44576-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
131Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No. 81872467 and 82073880
Informations de copyright
© 2024. The Author(s).
Références
Friedmann-Morvinski, D. & Hambardzumyan, D. Monocyte-neutrophil entanglement in glioblastoma. J. Clin. Invest. 133, e163451 (2023).
pubmed: 36594465
pmcid: 9797336
doi: 10.1172/JCI163451
Hambardzumyan, D., Gutmann, D. H. & Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20–27 (2016).
pubmed: 26713745
pmcid: 4876023
doi: 10.1038/nn.4185
Buonfiglioli, A. & Hambardzumyan, D. Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathol. Commun. 9, 54 (2021).
pubmed: 33766119
pmcid: 7992800
doi: 10.1186/s40478-021-01156-z
Chen, Z. et al. Genetic driver mutations introduced in identical cell-of-origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia 68, 2148–2166 (2020).
pubmed: 32639068
pmcid: 7512141
doi: 10.1002/glia.23883
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).
pubmed: 15001782
doi: 10.1126/science.1092385
Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).
pubmed: 30262472
pmcid: 6777850
doi: 10.1126/science.aao4227
Guglietta, S. et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. 7, 11037 (2016).
pubmed: 26996437
pmcid: 4802169
doi: 10.1038/ncomms11037
Teijeira, A. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871 e858 (2020).
pubmed: 32289253
doi: 10.1016/j.immuni.2020.03.001
Deng, X. et al. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 28, 507–517 (2018).
pubmed: 29686311
pmcid: 5951805
doi: 10.1038/s41422-018-0034-6
Huang, H. et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).
pubmed: 29476152
pmcid: 5826585
doi: 10.1038/s41556-018-0045-z
Lederer, M., Bley, N., Schleifer, C. & Huttelmaier, S. The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin Cancer Biol. 29, 3–12 (2014).
pubmed: 25068994
doi: 10.1016/j.semcancer.2014.07.006
Schadt, L. et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248 e1237 (2019).
pubmed: 31665636
doi: 10.1016/j.celrep.2019.09.065
Heinzerling, L. et al. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood 106, 2287–2294 (2005).
pubmed: 15961518
doi: 10.1182/blood-2004-11-4558
Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170, 1109–1119 e1110 (2017).
pubmed: 28886381
pmcid: 8034392
doi: 10.1016/j.cell.2017.08.027
Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583, 133–138 (2020).
pubmed: 32528174
doi: 10.1038/s41586-020-2394-6
Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).
pubmed: 20733033
pmcid: 2931169
doi: 10.1084/jem.20100239
Suvasini, R. et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J. Biol. Chem. 286, 25882–25890 (2011).
pubmed: 21613208
pmcid: 3138258
doi: 10.1074/jbc.M110.178012
Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 8, 361ra138 (2016).
pubmed: 27798263
pmcid: 5550900
doi: 10.1126/scitranslmed.aag1711
Yan, R., Dai, W., Wu, R., Huang, H. & Shu, M. Therapeutic targeting m6A-guided miR-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer. Cancer Lett. 534, 215615 (2022).
pubmed: 35278613
doi: 10.1016/j.canlet.2022.215615
Friedman, G. K. et al. Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas. N. Engl. J. Med. 384, 1613–1622 (2021).
pubmed: 33838625
pmcid: 8284840
doi: 10.1056/NEJMoa2024947
Elagib, K. E. et al. Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition. J. Clin. Invest. 127, 2365–2377 (2017).
pubmed: 28481226
pmcid: 5451240
doi: 10.1172/JCI88936
Palanichamy, J. K. et al. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation. J. Clin. Invest. 126, 1495–1511 (2016).
pubmed: 26974154
pmcid: 4811152
doi: 10.1172/JCI80046
Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).
pubmed: 25719671
pmcid: 4355918
doi: 10.1038/nature14234
Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).
pubmed: 27282249
doi: 10.1038/nrc.2016.52
Clark, R. A. & Klebanoff, S. J. Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. J. Exp. Med. 141, 1442–1447 (1975).
pubmed: 165258
doi: 10.1084/jem.141.6.1442
Koga, Y., Matsuzaki, A., Suminoe, A., Hattori, H. & Hara, T. Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils. Cancer Res. 64, 1037–1043 (2004).
pubmed: 14871835
doi: 10.1158/0008-5472.CAN-03-1808
Zhang, L. et al. Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases. Sci. Transl. Med. 12, eaaz5387 (2020).
pubmed: 32461334
pmcid: 7948522
doi: 10.1126/scitranslmed.aaz5387
Mousset, A. et al. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-beta activation. Cancer Cell 41, 757–775 e710 (2023).
pubmed: 37037615
doi: 10.1016/j.ccell.2023.03.008
Li, R., Zhang, J., Gilbert, S. M., Conejo-Garcia, J. & Mule, J. J. Using oncolytic viruses to ignite the tumour immune microenvironment in bladder cancer. Nat. Rev. Urol. 18, 543–555 (2021).
pubmed: 34183833
doi: 10.1038/s41585-021-00483-z
Chesney, J. A. et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J. Clin. Oncol. 41, 528–540 (2023).
pubmed: 35998300
doi: 10.1200/JCO.22.00343
Dho, S. E. et al. Proximity interactions of the ubiquitin ligase Mind bomb 1 reveal a role in regulation of epithelial polarity complex proteins. Sci. Rep. 9, 12471 (2019).
pubmed: 31462741
pmcid: 6713736
doi: 10.1038/s41598-019-48902-x
Otani, Y. et al. Oncolytic HSV-infected glioma cells activate NOTCH in adjacent tumor cells sensitizing tumors to gamma secretase inhibition. Clin. Cancer Res. 26, 2381–2392 (2020).
pubmed: 32139403
pmcid: 7325527
doi: 10.1158/1078-0432.CCR-19-3420
Feng, Z. et al. Targeting m6A modification inhibits herpes virus 1 infection. Genes Dis. 9, 1114–1128 (2022).
pubmed: 35685469
doi: 10.1016/j.gendis.2021.02.004
Gabrilove, J. L. et al. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N. Engl. J. Med. 318, 1414–1422 (1988).
pubmed: 2452983
doi: 10.1056/NEJM198806023182202
Crawford, J. et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N. Engl. J. Med. 325, 164–170 (1991).
pubmed: 1711156
doi: 10.1056/NEJM199107183250305
Ren, K. et al. An epigenetic compound library screen identifies BET inhibitors that promote HSV-1 and -2 replication by bridging P-TEFb to viral gene promoters through BRD4. PLoS Pathog. 12, e1005950 (2016).
pubmed: 27764245
pmcid: 5072739
doi: 10.1371/journal.ppat.1005950
Matzuk, M. M. et al. Small-molecule inhibition of BRDT for male contraception. Cell 150, 673–684 (2012).
pubmed: 22901802
pmcid: 3420011
doi: 10.1016/j.cell.2012.06.045
Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).
pubmed: 24138885
doi: 10.1016/j.immuni.2013.10.003
Zuo, S., Wei, M., Wang, S., Dong, J. & Wei, J. Pan-cancer analysis of immune cell infiltration identifies a prognostic immune-cell characteristic score (ICCS) in lung adenocarcinoma. Front Immunol. 11, 1218 (2020).
pubmed: 32714316
pmcid: 7344231
doi: 10.3389/fimmu.2020.01218
Shu, M., Taddeo, B., Zhang, W. & Roizman, B. Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein. Proc. Natl Acad. Sci. USA 110, E1669–E1675 (2013).
pubmed: 23589852
pmcid: 3645526
doi: 10.1073/pnas.1305475110
Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).
pubmed: 27185894
pmcid: 4987937
doi: 10.1093/nar/gkw398
Swamydas, M. & Lionakis, M. S. Isolation, purification and labeling of mouse bone marrow neutrophils for functional studies and adoptive transfer experiments. J Vis Exp, e50586, https://doi.org/10.3791/50586 (2013).