HSV1 microRNAs in glioblastoma development: an in silico study.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 Jan 2024
Historique:
received: 16 04 2023
accepted: 17 10 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor. Recent findings highlighted the significance of viral microRNAs (miRs) in regulating post-transcriptional mRNA expression in various human conditions. Although HSV1 encodes viral miRs and affects the central nervous system, no study investigated the roles of HSV1-encoding miRs in GBM development. This study applied in silico approaches to investigate whether HSV1-encoding miRs are involved in GBM development and, if so, how they regulate tumor-suppressive/oncogenes expression in GBM. This study leveraged bioinformatics approaches to identify the potential effect of HSV1 miRs in GBM development. The GSE158284, GSE153679, and GSE182109 datasets were analyzed to identify differentially expressed genes in GBM tissues and cell lines using the limma package in the R software. The GSE182109 dataset was analyzed to determine gene expression at the single-cell levels using the Seurat package in the R software. The TCGA-GTEX, GDSC, CTRP, immunogenetic, and enrichment analyses were performed to study the impact of identified viral HSV1 miRs targets in GBM development. hsv1-miR-H6-3p is upregulated in GBM and can be responsible for EPB41L1 and SH3PXD2A downregulation in GBM tissues. Also, hsv1-miR-H1-5p is upregulated in GBM and can decrease the expression of MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC in GBM development. The single-cell RNA sequencing analyses have demonstrated that MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC are expressed in astrocytes residing in the GBM microenvironment. This study provides novel insights into the potential roles of HSV1 miRs in GBM pathogenesis and offers a reference for further studies on the significance of HSV1 miRs in GBM development.

Identifiants

pubmed: 38167429
doi: 10.1038/s41598-023-45249-2
pii: 10.1038/s41598-023-45249-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

27

Informations de copyright

© 2023. The Author(s).

Références

Miller, K. D. et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 71, 381–406 (2021).
doi: 10.3322/caac.21693 pubmed: 34427324
Shadbad, M. A. et al. A Systematic review on the therapeutic potentiality of PD-L1-inhibiting microRNAs for triple-negative breast cancer: Toward single-cell sequencing-guided biomimetic delivery. Genes 12, 1206 (2021).
doi: 10.3390/genes12081206 pubmed: 34440380 pmcid: 8391239
Shadbad, M. A. et al. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed. Pharmacother. 143, 112213 (2021).
doi: 10.1016/j.biopha.2021.112213 pubmed: 34560556
Rezaei, T. et al. microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis. Eur. J. Pharmacol. 888, 173483. https://doi.org/10.1016/j.ejphar.2020.173483 (2020).
doi: 10.1016/j.ejphar.2020.173483 pubmed: 32810491
Dastmalchi, N. et al. An updated review of the cross-talk between microRNAs and epigenetic factors in cancers. Curr. Med. Chem. 28, 8722–8732 (2021).
doi: 10.2174/0929867328666210514125955 pubmed: 33992051
Buruiană, A. et al. The roles of miRNA in glioblastoma tumor cell communication: Diplomatic and aggressive negotiations. Int. J. Mol. Sci. 21, 1950 (2020).
doi: 10.3390/ijms21061950 pubmed: 32178454 pmcid: 7139390
Naqvi, A. R., Shango, J., Seal, A., Shukla, D. & Nares, S. Herpesviruses and microRNAs: New pathogenesis factors in oral infection and disease?. Front. Immunol. 9, 2099 (2018).
doi: 10.3389/fimmu.2018.02099 pubmed: 30319604 pmcid: 6170608
Lei, T. et al. Targeting of DICE1 tumor suppressor by Epstein–Barr virus-encoded miR-BART3* microRNA in nasopharyngeal carcinoma. Int. J. Cancer 133, 79–87 (2013).
doi: 10.1002/ijc.28007 pubmed: 23280823
Wong, A. M. G., Kong, K. L., Tsang, J. W. H., Kwong, D. L. W. & Guan, X. Y. Profiling of Epstein–Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer 118, 698–710 (2012).
doi: 10.1002/cncr.26309 pubmed: 21720996
Starr, J. R. et al. Serologic evidence of herpes simplex virus 1 infection and oropharyngeal cancer risk. Cancer Res. 61, 8459–8464 (2001).
pubmed: 11731428
Jalouli, J. et al. Human papilloma virus, herpes simplex virus and Epstein Barr virus in oral squamous cell carcinoma from eight different countries. Anticancer Res. 32, 571–580 (2012).
pubmed: 22287747
Brown, S. H., Afghan, A. K. & Satyanarayana, G. Herpes simplex virus-infected squamous cell carcinoma: A case report. BMC Infect. Dis. 22, 1–4 (2022).
doi: 10.1186/s12879-021-06995-8
Jasim, A., Proietto, A. & Scurry, J. Herpes simplex virus infection of vulvar squamous cell carcinoma. Pathology 48, 80–81 (2016).
doi: 10.1016/j.pathol.2015.11.006 pubmed: 27020215
Matsuda, T. et al. p53-independent p21 induction by MELK inhibition. Oncotarget 8, 57938 (2017).
doi: 10.18632/oncotarget.18488 pubmed: 28938528 pmcid: 5601624
Speers, C. et al. Maternal embryonic leucine zipper kinase (MELK) as a novel mediator and biomarker of radioresistance in human breast cancer. Clin. Cancer Res. 22, 5864–5875 (2016).
doi: 10.1158/1078-0432.CCR-15-2711 pubmed: 27225691 pmcid: 8820108
Zhang, X. et al. MELK inhibition effectively suppresses growth of glioblastoma and cancer stem-like cells by blocking AKT and FOXM1 pathways. Front. Oncol. 10, 3054 (2021).
Zins, K. et al. Frizzled2 signaling regulates growth of high-risk neuroblastomas by interfering with β-catenin-dependent and β-catenin-independent signaling pathways. Oncotarget 7, 46187 (2016).
doi: 10.18632/oncotarget.10070 pubmed: 27323822 pmcid: 5216790
Gujral, T. S. et al. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell 159, 844–856 (2014).
doi: 10.1016/j.cell.2014.10.032 pubmed: 25417160 pmcid: 4243058
Sayed, M. E. et al. NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells. Oncogene 38, 2937–2952 (2019).
doi: 10.1038/s41388-018-0639-8 pubmed: 30568224
Ludlow, A. T. et al. NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nat. Commun. 9, 1–15 (2018).
doi: 10.1038/s41467-018-05582-x
Jin, L. et al. MicroRNA-193a-5p exerts a tumor suppressor role in glioblastoma via modulating NOVA1. J. Cell. Biochem. 120, 6188–6197 (2019).
doi: 10.1002/jcb.27906 pubmed: 30304561
Qiu, G. et al. RNA interference against TMEM97 inhibits cell proliferation, migration, and invasion in glioma cells. Tumor Biol. 36, 8231–8238 (2015).
doi: 10.1007/s13277-015-3552-6
Shi, Y. et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat. Commun. 8, 1–17 (2017).
doi: 10.1038/ncomms15080
Fujikawa, A. et al. Targeting PTPRZ inhibits stem cell-like properties and tumorigenicity in glioblastoma cells. Sci. Rep. 7, 1–17 (2017).
doi: 10.1038/s41598-017-05931-8
Yang, Y. et al. MicroRNA-29a inhibits glioblastoma stem cells and tumor growth by regulating the PDGF pathway. J. Neuro-oncol. 145, 23–34 (2019).
doi: 10.1007/s11060-019-03275-z
McDermott, U. et al. Ligand-dependent platelet-derived growth factor receptor (PDGFR)-alpha activation sensitizes rare lung cancer and sarcoma cells to PDGFR kinase inhibitors. Cancer Res. 69, 3937–3946. https://doi.org/10.1158/0008-5472.Can-08-4327 (2009).
doi: 10.1158/0008-5472.Can-08-4327 pubmed: 19366796 pmcid: 2676215
Kim, S. et al. Inhibition of platelet-derived growth factor C and their receptors additionally increases doxorubicin effects in triple-negative breast cancer cells. Eur. J. Pharmacol. 895, 173868 (2021).
doi: 10.1016/j.ejphar.2021.173868 pubmed: 33460613
Han, X., Wang, X., Li, H. & Zhang, H. Mechanism of microRNA-431-5p-EPB41L1 interaction in glioblastoma multiforme cells. Arch. Med. Sci. AMS 15, 1555 (2019).
doi: 10.5114/aoms.2019.88274 pubmed: 31749885
Mangiola, A. et al. Gene expression profile of glioblastoma peritumoral tissue: An ex vivo study. PLoS One 8, e57145 (2013).
doi: 10.1371/journal.pone.0057145 pubmed: 23472076 pmcid: 3589444
Nam, H. J. et al. Azathioprine antagonizes aberrantly elevated lipid metabolism and induces apoptosis in glioblastoma. iScience 24, 102238. https://doi.org/10.1016/j.isci.2021.102238 (2021).
doi: 10.1016/j.isci.2021.102238 pubmed: 33748720 pmcid: 7957120
Abdelfattah, N. et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat. Commun. 13, 1–18 (2022).
doi: 10.1038/s41467-022-28372-y
Chen, Y. & Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 48, D127–D131 (2020).
doi: 10.1093/nar/gkz757 pubmed: 31504780
Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560. https://doi.org/10.1093/nar/gkz430 (2019).
doi: 10.1093/nar/gkz430 pubmed: 31114875 pmcid: 6602440
Liu, C. J. et al. GSCA: An integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief. Bioinform. https://doi.org/10.1093/bib/bbac558 (2023).
doi: 10.1093/bib/bbac558 pubmed: 38152979 pmcid: 10753537
Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science https://doi.org/10.1126/science.aay5947 (2020).
doi: 10.1126/science.aay5947 pubmed: 32139519
Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90. https://doi.org/10.1002/cpz1.90 (2021).
doi: 10.1002/cpz1.90 pubmed: 33780170 pmcid: 8152575
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e3529 (2021).
doi: 10.1016/j.cell.2021.04.048 pubmed: 34062119 pmcid: 8238499
Franzén, O., Gan, L.-M. & Björkegren, J. L. PanglaoDB: A web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019, baz046 (2019).
doi: 10.1093/database/baz046 pubmed: 30951143 pmcid: 6450036
Zhang, X. et al. Cell Marker: A manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 47, D721–D728 (2019).
doi: 10.1093/nar/gky900 pubmed: 30289549

Auteurs

Mahdi Abdoli Shadbad (M)

Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.

Nima Hemmat (N)

Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
European Virus Bioinformatics Center (EVBC), 07743, Jena, Germany.

Mahla Abdoli Shadbad (M)

Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Oronzo Brunetti (O)

Medical Oncology Unit-IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.

Nicola Silvestris (N)

Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy. nsilvestris@unime.it.

Behzad Baradaran (B)

Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. baradaranb@tbzmed.ac.ir.

Classifications MeSH