A Mendelian randomization study on the effects of plasma lipids on irritable bowel syndrome and functional dyspepsia.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 Jan 2024
Historique:
received: 14 07 2023
accepted: 20 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

Although functional gastrointestinal disorder (FGID) is a common clinical condition, its risk factors remain unclear. We performed a Mendelian randomization study to explore the association between plasma lipids and the risk of FGID. Instrumental variables closely related to six plasma lipids were obtained from the corresponding genome-wide association studies, and summary-level data on FGID, including irritable bowel syndrome (IBS) and functional dyspepsia (FD), were extracted from the FinnGen study. The primary inverse variance weighted method and other supplementary analyses were used to evaluate the causal relationship between diverse plasma lipids and FGID. For each increase in the standard deviation of triglyceride levels, there was a 12.0% increase in the risk of IBS rather than that of FD. Low- and high-density lipoprotein cholesterol, total cholesterol, apolipoprotein A, and apolipoprotein B levels were not associated with the risk of IBS or FD. Through this study, we identified the causal role of triglycerides in the pathogenesis of IBS, which could benefit further basic and clinical research.

Identifiants

pubmed: 38167458
doi: 10.1038/s41598-023-50459-9
pii: 10.1038/s41598-023-50459-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

78

Subventions

Organisme : National Natural Science Foundation of China
ID : 82070547

Informations de copyright

© 2024. The Author(s).

Références

Drossman, D. A. & Hasler, W. L. Rome IV-functional GI Disorders: Disorders of gut–brain interaction. Gastroenterology 150(6), 1257–1261 (2016).
pubmed: 27147121 doi: 10.1053/j.gastro.2016.03.035
Koloski, N. A., Talley, N. J. & Boyce, P. M. Epidemiology and health care seeking in the functional GI disorders: A population-based study. Am. J. Gastroenterol. 97(9), 2290–2299 (2002).
pubmed: 12358247 doi: 10.1111/j.1572-0241.2002.05783.x
Black, C. J. et al. Functional gastrointestinal disorders: Advances in understanding and management. Lancet 396(10263), 1664–1674 (2020).
pubmed: 33049221 doi: 10.1016/S0140-6736(20)32115-2
Aziz, I. et al. The prevalence and impact of overlapping Rome IV-diagnosed functional gastrointestinal disorders on somatization, quality of life, and healthcare utilization: A cross-sectional general population study in three countries. Am. J. Gastroenterol. 113(1), 86–96 (2018).
pubmed: 29134969 doi: 10.1038/ajg.2017.421
Holtmann, G., Shah, A. & Morrison, M. Pathophysiology of functional gastrointestinal disorders: A holistic overview. Dig. Dis. 35(Suppl 1), 5–13 (2017).
pubmed: 29421808 doi: 10.1159/000485409
Eriksson, E. M. et al. Irritable bowel syndrome subtypes differ in body awareness, psychological symptoms and biochemical stress markers. World J. Gastroenterol. 14(31), 4889–4896 (2008).
pubmed: 18756596 pmcid: 2739941 doi: 10.3748/wjg.14.4889
Fraser, K. et al. Su1576—Metabolomic profiling of subjects with functional gastrointestinal disorders: A case/control study in New Zealand reveals significant perturbations in plasma lipid and metabolite levels. Gastroenterology 156(6), 569–570 (2019).
doi: 10.1016/S0016-5085(19)38315-5
Karpe, A. V. et al. Utilising lipid and arginine and proline metabolism in blood plasma to differentiate the biochemical expression in functional dyspepsia (FD) and irritable bowel syndrome (IBS). Metabolomics 18(6), 38 (2022).
pubmed: 35687195 doi: 10.1007/s11306-022-01900-z
Schmulson, M. J. & Drossman, D. A. What is new in Rome IV. J. Neurogastroenterol. Motil. 23(2), 151–163 (2017).
pubmed: 28274109 pmcid: 5383110 doi: 10.5056/jnm16214
Guo, Y. et al. Irritable bowel syndrome is positively related to metabolic syndrome: A population-based cross-sectional study. PLoS ONE 9(11), e112289 (2014).
pubmed: 25383869 pmcid: 4226513 doi: 10.1371/journal.pone.0112289
Solakivi, T. et al. Serum fatty acid profile in subjects with irritable bowel syndrome. Scand. J. Gastroenterol. 46(3), 299–303 (2011).
pubmed: 21073373 doi: 10.3109/00365521.2010.533380
Camilleri, M. Review article: New receptor targets for medical therapy in irritable bowel syndrome. Aliment Pharmacol. Ther. 31(1), 35–46 (2010).
pubmed: 19785622 pmcid: 2896496 doi: 10.1111/j.1365-2036.2009.04153.x
Di Pierro, F., Putignano, P. & Villanova, N. Retrospective analysis of the effects of a highly standardized mixture of Berberis aristata, Silybum marianum, and monacolins K and KA in diabetic patients with dyslipidemia. Acta Biomed. 88(4), 462–469 (2018).
pubmed: 29350661
Little, M. Mendelian randomization: Methods for using genetic variants in causal estimation. J. R. Stat. Soc. 181(2), 549–550 (2018).
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Kurki, M. I. et al. Unique Genetic Insights from Combining Isolated Population and National Health Register Data (2022).
Wooldridge, J. M. Introductory Econometrics: A Modern Approach (Delhi Cengage Learning, 2009).
Bowden, J. et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40(4), 304 (2016).
pubmed: 27061298 pmcid: 4849733 doi: 10.1002/gepi.21965
Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32(5), 32 (2017).
Hemani, G. et al. Automating Mendelian Randomization Through Machine Learning to Construct a Putative Causal Map of the Human Phenome (2017).
Burgess, S. et al. Robust Instrumental Variable Methods Using Multiple Candidate Instruments with Application to Mendelian Randomization (2016).
Milligan, B. G. Maximum-likelihood estimation of relatedness. Genetics 163(3), 1153–1167 (2003).
pubmed: 12663552 pmcid: 1462494 doi: 10.1093/genetics/163.3.1153
Han, L. et al. Altered metabolome and microbiome features provide clues in understanding irritable bowel syndrome and depression comorbidity. ISME J. 16(4), 983–996 (2022).
pubmed: 34750528 doi: 10.1038/s41396-021-01123-5
Kilkens, T. O. et al. Fatty acid profile and affective dysregulation in irritable bowel syndrome. Lipids 39(5), 425–431 (2004).
pubmed: 15506237 doi: 10.1007/s11745-004-1247-x
Zhang, Y. et al. Causal relationship between particulate matter 2.5 and hypothyroidism: A two-sample Mendelian randomization study. Front. Public Health 10, 1000103 (2022).
pubmed: 36504957 pmcid: 9732245 doi: 10.3389/fpubh.2022.1000103
Alves-Bezerra, M. & Cohen, D. E. Triglyceride metabolism in the liver. Compr. Physiol. 8(1), 1–8 (2017).
pubmed: 29357123 pmcid: 6376873
Tesfaye, S. et al. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 352(4), 341–350 (2005).
pubmed: 15673800 doi: 10.1056/NEJMoa032782
Tirosh, A. et al. Changes in triglyceride levels and risk for coronary heart disease in young men. Ann. Intern. Med. 147(6), 377–385 (2007).
pubmed: 17876021 doi: 10.7326/0003-4819-147-6-200709180-00007
Yang, A. L. & McNabb-Baltar, J. Hypertriglyceridemia and acute pancreatitis. Pancreatology 20(5), 795–800 (2020).
pubmed: 32571534 doi: 10.1016/j.pan.2020.06.005
Sherwin, L. B. et al. Gender and weight influence quality of life in irritable bowel syndrome. J. Clin. Med. 6(11), 103 (2017).
pubmed: 29104254 pmcid: 5704120 doi: 10.3390/jcm6110103
Welty, F. K. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr. Cardiol. Rep. 15(9), 400 (2013).
pubmed: 23881582 pmcid: 4465984 doi: 10.1007/s11886-013-0400-4
Ley, R. E. et al. Microbial ecology: Human gut microbes associated with obesity. Nature 444(7122), 1022–1023 (2006).
pubmed: 17183309 doi: 10.1038/4441022a
Hongfang, C. et al. Intake of a high-fat diet alters intestinal flora in male SD rats. Chin. J. Microecol. 24(02), 102–108 (2012).
Fasano, A. Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 10(10), 1096–1100 (2012).
pubmed: 22902773 pmcid: 3458511 doi: 10.1016/j.cgh.2012.08.012
Ohlsson, B. An Okinawan-based Nordic diet improves glucose and lipid metabolism in health and type 2 diabetes, in alignment with changes in the endocrine profile, whereas zonulin levels are elevated. Exp. Ther. Med. 17(4), 2883–2893 (2019).
pubmed: 30936958 pmcid: 6434283
Ohlsson, B., Orho-Melander, M. & Nilsson, P. M. Higher levels of serum zonulin may rather be associated with increased risk of obesity and hyperlipidemia, than with gastrointestinal symptoms or disease manifestations. Int. J. Mol. Sci. 18(3), 582 (2017).
pubmed: 28282855 pmcid: 5372598 doi: 10.3390/ijms18030582
Galica, A. N., Galica, R. & Dumitrașcu, D. L. Diet, fibers, and probiotics for irritable bowel syndrome. J. Med. Life 15(2), 174–179 (2022).
pubmed: 35419092 pmcid: 8999090 doi: 10.25122/jml-2022-0028
Böhn, L. et al. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am. J. Gastroenterol. 108(5), 634–641 (2013).
pubmed: 23644955 doi: 10.1038/ajg.2013.105
Na, W. et al. High-fat foods and FODMAPs containing gluten foods primarily contribute to symptoms of irritable Bowel syndrome in Korean adults. Nutrients 13(4), 1308 (2021).
pubmed: 33920966 pmcid: 8071217 doi: 10.3390/nu13041308
Tigchelaar, E. F. et al. Habitual diet and diet quality in irritable Bowel syndrome: A case–control study. Neurogastroenterol. Motil. 29(12), e13151 (2017).
doi: 10.1111/nmo.13151
Li, X. et al. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. Am. J. Physiol. Gastrointest. Liver Physiol. 317(4), G453–G462 (2019).
pubmed: 31411504 doi: 10.1152/ajpgi.00103.2019
Wardani, H. A. et al. Development of nonalcoholic fatty liver disease model by high-fat diet in rats. J. Basic Clin. Physiol. Pharmacol. 30(6), 20190258 (2019).
doi: 10.1515/jbcpp-2019-0258
Zia, J. K. et al. Risk factors for abdominal pain-related disorders of gut–brain interaction in adults and children: A systematic review. Gastroenterology 163(4), 995–1023 (2022).
pubmed: 35716771 doi: 10.1053/j.gastro.2022.06.028
Robertson, R. P. et al. Accelerated triglyceride secretion. A metabolic consequence of obesity. J. Clin. Investig. 52(7), 1620–1626 (1973).
pubmed: 4718956 pmcid: 302434 doi: 10.1172/JCI107340
Burgess, S. et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 4, 186 (2020).
doi: 10.12688/wellcomeopenres.15555.2

Auteurs

Mengmeng Xu (M)

Department of Gastroenterology, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410007, China.
Research Center of Digestive Disease, Central South University, Changsha, China.

Deliang Liu (D)

Department of Gastroenterology, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410007, China.
Research Center of Digestive Disease, Central South University, Changsha, China.

Yuyong Tan (Y)

Department of Gastroenterology, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410007, China.
Research Center of Digestive Disease, Central South University, Changsha, China.

Jian He (J)

Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

Bingyi Zhou (B)

Department of Gastroenterology, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410007, China. zhoubingyi0508@csu.edu.cn.
Research Center of Digestive Disease, Central South University, Changsha, China. zhoubingyi0508@csu.edu.cn.

Classifications MeSH