A Mendelian randomization study on the effects of plasma lipids on irritable bowel syndrome and functional dyspepsia.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 Jan 2024
02 Jan 2024
Historique:
received:
14
07
2023
accepted:
20
12
2023
medline:
4
1
2024
pubmed:
4
1
2024
entrez:
3
1
2024
Statut:
epublish
Résumé
Although functional gastrointestinal disorder (FGID) is a common clinical condition, its risk factors remain unclear. We performed a Mendelian randomization study to explore the association between plasma lipids and the risk of FGID. Instrumental variables closely related to six plasma lipids were obtained from the corresponding genome-wide association studies, and summary-level data on FGID, including irritable bowel syndrome (IBS) and functional dyspepsia (FD), were extracted from the FinnGen study. The primary inverse variance weighted method and other supplementary analyses were used to evaluate the causal relationship between diverse plasma lipids and FGID. For each increase in the standard deviation of triglyceride levels, there was a 12.0% increase in the risk of IBS rather than that of FD. Low- and high-density lipoprotein cholesterol, total cholesterol, apolipoprotein A, and apolipoprotein B levels were not associated with the risk of IBS or FD. Through this study, we identified the causal role of triglycerides in the pathogenesis of IBS, which could benefit further basic and clinical research.
Identifiants
pubmed: 38167458
doi: 10.1038/s41598-023-50459-9
pii: 10.1038/s41598-023-50459-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
78Subventions
Organisme : National Natural Science Foundation of China
ID : 82070547
Informations de copyright
© 2024. The Author(s).
Références
Drossman, D. A. & Hasler, W. L. Rome IV-functional GI Disorders: Disorders of gut–brain interaction. Gastroenterology 150(6), 1257–1261 (2016).
pubmed: 27147121
doi: 10.1053/j.gastro.2016.03.035
Koloski, N. A., Talley, N. J. & Boyce, P. M. Epidemiology and health care seeking in the functional GI disorders: A population-based study. Am. J. Gastroenterol. 97(9), 2290–2299 (2002).
pubmed: 12358247
doi: 10.1111/j.1572-0241.2002.05783.x
Black, C. J. et al. Functional gastrointestinal disorders: Advances in understanding and management. Lancet 396(10263), 1664–1674 (2020).
pubmed: 33049221
doi: 10.1016/S0140-6736(20)32115-2
Aziz, I. et al. The prevalence and impact of overlapping Rome IV-diagnosed functional gastrointestinal disorders on somatization, quality of life, and healthcare utilization: A cross-sectional general population study in three countries. Am. J. Gastroenterol. 113(1), 86–96 (2018).
pubmed: 29134969
doi: 10.1038/ajg.2017.421
Holtmann, G., Shah, A. & Morrison, M. Pathophysiology of functional gastrointestinal disorders: A holistic overview. Dig. Dis. 35(Suppl 1), 5–13 (2017).
pubmed: 29421808
doi: 10.1159/000485409
Eriksson, E. M. et al. Irritable bowel syndrome subtypes differ in body awareness, psychological symptoms and biochemical stress markers. World J. Gastroenterol. 14(31), 4889–4896 (2008).
pubmed: 18756596
pmcid: 2739941
doi: 10.3748/wjg.14.4889
Fraser, K. et al. Su1576—Metabolomic profiling of subjects with functional gastrointestinal disorders: A case/control study in New Zealand reveals significant perturbations in plasma lipid and metabolite levels. Gastroenterology 156(6), 569–570 (2019).
doi: 10.1016/S0016-5085(19)38315-5
Karpe, A. V. et al. Utilising lipid and arginine and proline metabolism in blood plasma to differentiate the biochemical expression in functional dyspepsia (FD) and irritable bowel syndrome (IBS). Metabolomics 18(6), 38 (2022).
pubmed: 35687195
doi: 10.1007/s11306-022-01900-z
Schmulson, M. J. & Drossman, D. A. What is new in Rome IV. J. Neurogastroenterol. Motil. 23(2), 151–163 (2017).
pubmed: 28274109
pmcid: 5383110
doi: 10.5056/jnm16214
Guo, Y. et al. Irritable bowel syndrome is positively related to metabolic syndrome: A population-based cross-sectional study. PLoS ONE 9(11), e112289 (2014).
pubmed: 25383869
pmcid: 4226513
doi: 10.1371/journal.pone.0112289
Solakivi, T. et al. Serum fatty acid profile in subjects with irritable bowel syndrome. Scand. J. Gastroenterol. 46(3), 299–303 (2011).
pubmed: 21073373
doi: 10.3109/00365521.2010.533380
Camilleri, M. Review article: New receptor targets for medical therapy in irritable bowel syndrome. Aliment Pharmacol. Ther. 31(1), 35–46 (2010).
pubmed: 19785622
pmcid: 2896496
doi: 10.1111/j.1365-2036.2009.04153.x
Di Pierro, F., Putignano, P. & Villanova, N. Retrospective analysis of the effects of a highly standardized mixture of Berberis aristata, Silybum marianum, and monacolins K and KA in diabetic patients with dyslipidemia. Acta Biomed. 88(4), 462–469 (2018).
pubmed: 29350661
Little, M. Mendelian randomization: Methods for using genetic variants in causal estimation. J. R. Stat. Soc. 181(2), 549–550 (2018).
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Kurki, M. I. et al. Unique Genetic Insights from Combining Isolated Population and National Health Register Data (2022).
Wooldridge, J. M. Introductory Econometrics: A Modern Approach (Delhi Cengage Learning, 2009).
Bowden, J. et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40(4), 304 (2016).
pubmed: 27061298
pmcid: 4849733
doi: 10.1002/gepi.21965
Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32(5), 32 (2017).
Hemani, G. et al. Automating Mendelian Randomization Through Machine Learning to Construct a Putative Causal Map of the Human Phenome (2017).
Burgess, S. et al. Robust Instrumental Variable Methods Using Multiple Candidate Instruments with Application to Mendelian Randomization (2016).
Milligan, B. G. Maximum-likelihood estimation of relatedness. Genetics 163(3), 1153–1167 (2003).
pubmed: 12663552
pmcid: 1462494
doi: 10.1093/genetics/163.3.1153
Han, L. et al. Altered metabolome and microbiome features provide clues in understanding irritable bowel syndrome and depression comorbidity. ISME J. 16(4), 983–996 (2022).
pubmed: 34750528
doi: 10.1038/s41396-021-01123-5
Kilkens, T. O. et al. Fatty acid profile and affective dysregulation in irritable bowel syndrome. Lipids 39(5), 425–431 (2004).
pubmed: 15506237
doi: 10.1007/s11745-004-1247-x
Zhang, Y. et al. Causal relationship between particulate matter 2.5 and hypothyroidism: A two-sample Mendelian randomization study. Front. Public Health 10, 1000103 (2022).
pubmed: 36504957
pmcid: 9732245
doi: 10.3389/fpubh.2022.1000103
Alves-Bezerra, M. & Cohen, D. E. Triglyceride metabolism in the liver. Compr. Physiol. 8(1), 1–8 (2017).
pubmed: 29357123
pmcid: 6376873
Tesfaye, S. et al. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 352(4), 341–350 (2005).
pubmed: 15673800
doi: 10.1056/NEJMoa032782
Tirosh, A. et al. Changes in triglyceride levels and risk for coronary heart disease in young men. Ann. Intern. Med. 147(6), 377–385 (2007).
pubmed: 17876021
doi: 10.7326/0003-4819-147-6-200709180-00007
Yang, A. L. & McNabb-Baltar, J. Hypertriglyceridemia and acute pancreatitis. Pancreatology 20(5), 795–800 (2020).
pubmed: 32571534
doi: 10.1016/j.pan.2020.06.005
Sherwin, L. B. et al. Gender and weight influence quality of life in irritable bowel syndrome. J. Clin. Med. 6(11), 103 (2017).
pubmed: 29104254
pmcid: 5704120
doi: 10.3390/jcm6110103
Welty, F. K. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr. Cardiol. Rep. 15(9), 400 (2013).
pubmed: 23881582
pmcid: 4465984
doi: 10.1007/s11886-013-0400-4
Ley, R. E. et al. Microbial ecology: Human gut microbes associated with obesity. Nature 444(7122), 1022–1023 (2006).
pubmed: 17183309
doi: 10.1038/4441022a
Hongfang, C. et al. Intake of a high-fat diet alters intestinal flora in male SD rats. Chin. J. Microecol. 24(02), 102–108 (2012).
Fasano, A. Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 10(10), 1096–1100 (2012).
pubmed: 22902773
pmcid: 3458511
doi: 10.1016/j.cgh.2012.08.012
Ohlsson, B. An Okinawan-based Nordic diet improves glucose and lipid metabolism in health and type 2 diabetes, in alignment with changes in the endocrine profile, whereas zonulin levels are elevated. Exp. Ther. Med. 17(4), 2883–2893 (2019).
pubmed: 30936958
pmcid: 6434283
Ohlsson, B., Orho-Melander, M. & Nilsson, P. M. Higher levels of serum zonulin may rather be associated with increased risk of obesity and hyperlipidemia, than with gastrointestinal symptoms or disease manifestations. Int. J. Mol. Sci. 18(3), 582 (2017).
pubmed: 28282855
pmcid: 5372598
doi: 10.3390/ijms18030582
Galica, A. N., Galica, R. & Dumitrașcu, D. L. Diet, fibers, and probiotics for irritable bowel syndrome. J. Med. Life 15(2), 174–179 (2022).
pubmed: 35419092
pmcid: 8999090
doi: 10.25122/jml-2022-0028
Böhn, L. et al. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am. J. Gastroenterol. 108(5), 634–641 (2013).
pubmed: 23644955
doi: 10.1038/ajg.2013.105
Na, W. et al. High-fat foods and FODMAPs containing gluten foods primarily contribute to symptoms of irritable Bowel syndrome in Korean adults. Nutrients 13(4), 1308 (2021).
pubmed: 33920966
pmcid: 8071217
doi: 10.3390/nu13041308
Tigchelaar, E. F. et al. Habitual diet and diet quality in irritable Bowel syndrome: A case–control study. Neurogastroenterol. Motil. 29(12), e13151 (2017).
doi: 10.1111/nmo.13151
Li, X. et al. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. Am. J. Physiol. Gastrointest. Liver Physiol. 317(4), G453–G462 (2019).
pubmed: 31411504
doi: 10.1152/ajpgi.00103.2019
Wardani, H. A. et al. Development of nonalcoholic fatty liver disease model by high-fat diet in rats. J. Basic Clin. Physiol. Pharmacol. 30(6), 20190258 (2019).
doi: 10.1515/jbcpp-2019-0258
Zia, J. K. et al. Risk factors for abdominal pain-related disorders of gut–brain interaction in adults and children: A systematic review. Gastroenterology 163(4), 995–1023 (2022).
pubmed: 35716771
doi: 10.1053/j.gastro.2022.06.028
Robertson, R. P. et al. Accelerated triglyceride secretion. A metabolic consequence of obesity. J. Clin. Investig. 52(7), 1620–1626 (1973).
pubmed: 4718956
pmcid: 302434
doi: 10.1172/JCI107340
Burgess, S. et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 4, 186 (2020).
doi: 10.12688/wellcomeopenres.15555.2