Entomotherapy as an alternative treatment for diseases due to Gram-negative bacteria in Burkina Faso.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 Jan 2024
02 Jan 2024
Historique:
received:
15
11
2023
accepted:
22
12
2023
medline:
4
1
2024
pubmed:
4
1
2024
entrez:
3
1
2024
Statut:
epublish
Résumé
Insects are known for their harmful effects. However, they also benefit humans, animals, plants, and ecosystems. Its beneficial uses include entomophagy and entomotherapy. This study aimed to evaluate the antibacterial activity of insect extracts against Gram-negative bacteria. Antibacterial activities of thirteen crude extracts of medicinal insects were tested against twelve Gram-negative bacteria by diffusion on agar. Imipenem was used as an antibiotic for positive control. The thirteen extracts acted differently against certain Gram-negative bacteria. The largest inhibition diameter was for extracts of Cirina butyrospermi and Mylabris variabilis against Pseudomonas aeruginosa ATCC27853 and Salmonella enteritidis ATCC13076, respectively. The diameters of inhibition obtained using imipenem against these same bacterial strains were 13.0 ± 0.0 mm and 22 ± 1.0 mm, respectively. The lowest inhibition diameter (7.5 ± 0.0 mm) was obtained using Anopheles gambiae extract against Salmonella Typhimurium ATCC14028. Imipenem was active on all strains tested. The highest values of the index multi-resistance to insect's extracts were reported for Pseudomonas aeruginosa ATCC9027 and Serratia odorifera 652411. Overall, the results of this study confirmed the antibacterial activities of insects used by traditional health practitioners to treat different pathologies. Entomotherapy could be an alternative treatment for certain infectious pathologies caused by gram-negative bacteria.
Identifiants
pubmed: 38167478
doi: 10.1038/s41598-023-50622-2
pii: 10.1038/s41598-023-50622-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7Subventions
Organisme : CEA-CFOREM
ID : CEA-CFOREM
Informations de copyright
© 2024. The Author(s).
Références
Raven, P. H., Hassenzahl, D. M. & Berg, L. R. Environment. 8. ed., International Student Version. Singapore: Wiley. (2013).
Cherry, R. H. Use of insects by australian aborigines. Am. Entomol. 37(1), 8–13. https://doi.org/10.1093/ae/37.1.8 (1991).
doi: 10.1093/ae/37.1.8
Bonn, D. Maggot therapy: an alternative for wound infection. The Lancet 356(9236), 1174. https://doi.org/10.1016/S0140-6736(05)72870-1 (2000).
doi: 10.1016/S0140-6736(05)72870-1
Meda, A., Lamien, C. E., Millogo, J., Romito, M. & Nacoulma, O. G. Therapeutic uses of honey and honeybee larvae in central Burkina Faso. J. Ethnopharmacol. 95(1), 103–107. https://doi.org/10.1016/j.jep.2004.06.016 (2004).
doi: 10.1016/j.jep.2004.06.016
pubmed: 15374614
Fen, Y., Zhao, M., He, Z., Chen, Z. & Sun, L. Research and utilization of medicinal insects in China. Entomol. Res. 39(5), 313–316. https://doi.org/10.1111/j.1748-5967.2009.00236.x (2009).
doi: 10.1111/j.1748-5967.2009.00236.x
Hammoud-Mahdi, D. et al. Chemical profile and antimicrobial activity of the fungus-growing termite strain Macrotermes Bellicosus used in traditional medicine in the Republic of Benin. Molecules 25(21), 5015. https://doi.org/10.3390/molecules25215015 (2020).
doi: 10.3390/molecules25215015
pubmed: 33138110
pmcid: 7662623
Wu, Q., Patočka, J. & Kuča, K. Insect antimicrobial peptides, a mini review. Toxins. 10(11), 461. https://doi.org/10.3390/toxins10110461 (2018).
doi: 10.3390/toxins10110461
pubmed: 30413046
pmcid: 6267271
Kalsy, M. et al. The insect antimicrobial peptide cecropin A disrupts uropathogenic Escherichia coli biofilms. NPJ Biofilms Microbiomes. 6(1), 6. https://doi.org/10.1038/s41522-020-0116-3 (2020).
doi: 10.1038/s41522-020-0116-3
pubmed: 32051417
pmcid: 7016129
Manniello, M. D. et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci. 78(9), 4259–4282 (2021).
doi: 10.1007/s00018-021-03784-z
pubmed: 33595669
pmcid: 8164593
Moretta, A. et al. Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol. 11, 668632. https://doi.org/10.1007/s00018-021-03784-z (2021).
doi: 10.1007/s00018-021-03784-z
pubmed: 34195099
pmcid: 8238046
Andrès, E. & Dimarcq, J. L. Peptides antimicrobiens cationiques: de l’étude de l’immunité innée à la production de médicaments. Med Mal Infect. 37(4), 194–199. https://doi.org/10.1016/j.medmal.2006.09.009 (2007).
doi: 10.1016/j.medmal.2006.09.009
pubmed: 17306486
Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0 (2022).
doi: 10.1016/S0140-6736(21)02724-0
Kaye, K. S. & Pogue, J. M. Infections caused by resistant gram-negative bacteria: epidemiology and management. Pharmacotherapy. 35(10), 949–962. https://doi.org/10.1002/phar.1636 (2015).
doi: 10.1002/phar.1636
pubmed: 26497481
Savadogo, A., Ilboudo, J. A., Gnankiné, O. & Traore, A. S. Numeration and Identification of thermotolerant endospore-forming Bacillus from two fermented condiments Bikalga and Soumbala. Adv. Environ. Biol. 2960–2967 (2011).
Cissé, H. et al. Molecular characterization of Bacillus, lactic acid bacteria and yeast as potential probiotic isolated from fermented food. Sci. Afr. 6, e00175. https://doi.org/10.1016/j.sciaf.2019.e00175 (2019).
doi: 10.1016/j.sciaf.2019.e00175
Waongo, B. et al. A fermented food as a source of Bacillus strain producing antimicrobial peptides. Sci. Afr. 20, e01714. https://doi.org/10.1016/j.sciaf.2023.e01714 (2023).
doi: 10.1016/j.sciaf.2023.e01714
Kaboré, B. et al. (GTG)5-PCR fingerprinting of multi-drug resistant Escherichia coli bacteria isolates from hospital in Ouagadougou Burkina Faso. BMC Microbiol. 22(1), 118. https://doi.org/10.1186/s12866-022-02537-7 (2022).
doi: 10.1186/s12866-022-02537-7
pubmed: 35488211
pmcid: 9052641
Sanou, S. et al. Prevalence and molecular characterization of extended spectrum β-lactamase, plasmid-mediated quinolone resistance, and carbapenemase-producing gram-negative bacilli in Burkina Faso. Microbial Drug Resistance. 27(1), 18–24. https://doi.org/10.1089/mdr.2020.0134 (2021).
doi: 10.1089/mdr.2020.0134
pubmed: 32522076
Ouango, M., Romba, R., Drabo, S. F., Ouedraogo, N. & Gnankiné, O. Indigenous knowledge system associated with the uses of insects for therapeutic or medicinal purposes in two main provinces of Burkina Faso West Africa. J Ethnobiology Ethnomedicine. 18(1), 50. https://doi.org/10.1186/s13002-022-00547-3 (2022).
doi: 10.1186/s13002-022-00547-3
Fagot, J., Bortels, J. & Dekoninck, W. La pratique de l’entomologie du terrain au conservatoire ou l’essentiel est de bien transmettre. 125–46. https://doi.org/10.25518/2030-6318.5838 (2022).
Upton, M., Mantle, B. & Hastings, A. Methods for Collecting, Preserving and Studying Insects and other Terrestrial Arthropods. J. Aust. Entomol. Soc. (2010).
Samways, M. J., McGeoch, M. A. & New, T. R. Insect Conservation: A handbook of Approaches and Methods. Oxford University Press. (2010).
Dah-Nouvlessounon, D. et al. Phytochemical Analysis and Biological Activities of Cola nitida Bark. Biochem. Res. Int. https://doi.org/10.1155/2015/493879 (2015).
doi: 10.1155/2015/493879
pubmed: 25767723
pmcid: 4341853
Humphries, R., Bobenchik, A. M., Hindler, J. A. & Schuetz, A. N. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol 59(12), 10–1128. https://doi.org/10.1128/jcm.00213-21 (2021).
doi: 10.1128/jcm.00213-21
Das, S. et al. A novel probiotic strain of Lactobacillus fermentum TIU19 isolated from Haria beer showing both in vitro antibacterial and antibiofilm properties upon two multi resistant uro-pathogen strains. Curr. Res. Microb. Sci. 3, 100150. https://doi.org/10.1016/j.crmicr.100150 (2022).
doi: 10.1016/j.crmicr.100150
pubmed: 35909596
pmcid: 9325903
Ramos-Elorduy, J. & Moreno, J. M. The utilization of insects in the empirical medecine of ancient Mexicans. J. Ethnobiol. 195–202 (1988).
Costa-Neto, E. M. The use of insects in folk medicine in the state of Bahia, Northeastern Brazil, with notes on insects reported elsewhere in Brazilian Folk Medicine. Hum. Ecol. 30(2), 245–263 (2002).
doi: 10.1023/A:1015696830997
Alves, R. R. N., Oliveira, M. G. G., Barboza, R. R. D., Singh, R. & Lopez, L. C. S. Medicinal Animals as Therapeutic Alternative in a Semi-Arid Region of Northeastern Brazil. Forsch Komplementmed. 16(5), 305–312. https://doi.org/10.1159/000235855 (2009).
doi: 10.1159/000235855
pubmed: 19887809
Silva, C. C. A. D. Activation of Prophenoloxidase and Removal of Bacillus subtilis from the Hemolymph of Acheta domesticus (L) (Orthoptera: Gryllidae). Neotrop Entomol. 31(3), 487–491. https://doi.org/10.1590/S1519-566X2002000300024 (2002).
doi: 10.1590/S1519-566X2002000300024
Ribeiro, J. M. C., Mans, B. J. & Arcà, B. An insight into the sialome of blood-feeding Nematocera. Insect Biochem. Mol. Biol. 40(11), 767–784. https://doi.org/10.1016/j.ibmb.2010.08.002 (2010).
doi: 10.1016/j.ibmb.2010.08.002
pubmed: 20728537
pmcid: 2950210
Lupoli, R. L’insecte médicinal. Vol. 1. Fontenay-sous-bois: Ancyrosoma; 290 p (2010).
Pereira, A. F. M. et al. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains. Microb. Pathog. 141, 104011. https://doi.org/10.1016/j.micpath.2020.104011 (2020).
doi: 10.1016/j.micpath.2020.104011
Aiyelaagbe, O. O. & Osamudiamen, P. M. Phytochemical screening for active compounds in Mangifera indica leaves from Ibadan Oyo State. Plant Sci Res. 2(1), 11–13 (2009).
Mathew, T. J. et al. Physicochemical and Phytochemical Composition of locust bean tree emperor moth larvae (Bunaea alcinoe) from Gurara Local Government Area, Niger state, Nigeria. Int. J. Eng. Sci. 3, 14–18 (2014).
Morgane, A., Toguyéni, A., Otchoumou, A., Zoungrana-Kaboré, C. Y. & Kouamelan, E. P. Nutritional qualities of edible caterpillars Cirina butyrospermi in southwestern of Burkina Faso. IJIAS. 18(2), 639–645 (2016).
Séré, A. et al. Traditional knowledge regarding edible insects in Burkina Faso. J Ethnobiology Ethnomedicine. 14(1), 59. https://doi.org/10.1186/s13002-018-0258-z (2018).
doi: 10.1186/s13002-018-0258-z
Afolayan, E. M., Babayi, H., Reuben, R. C. & Akintola, R. I. Anti-Salmonella activity of metabolites from African soldier termites, Macrotermes bellicosus. Af J Clin Exp Micro. 20(3), 175. https://doi.org/10.4314/ajcem.v20i3.2 (2019).
doi: 10.4314/ajcem.v20i3.2
Blum, S. B. chemical defenses of arthropods. (Academic press). 562 p, (1981).
Long, Y. et al. Diversity and antimicrobial activities of culturable actinomycetes from Odontotermes formosanus (Blattaria: Termitidae). BMC Microbiol. 22(1), 80. https://doi.org/10.1186/s12866-022-02501-5 (2022).
doi: 10.1186/s12866-022-02501-5
pubmed: 35337263
pmcid: 8951712
Kim, I. W. et al. De novo transcriptome analysis and detection of antimicrobial peptides of the American Cockroach Periplaneta americana (Linnaeus) Bhattacharjya S, éditeur. PLoS ONE. 11(5), e0155304. https://doi.org/10.1371/journal.pone.0155304 (2016).
doi: 10.1371/journal.pone.0155304
pubmed: 27167617
pmcid: 4864078
Basseri, H. R., Dadi-Khoeni, A., Bakhtiari, R., Abolhassani, M. & Hajihosseini-Baghdadabadi, R. Isolation and purification of an antibacterial protein from immune induced haemolymph of American Cockroach Periplaneta americana. J Arthropod Borne Dis. 10(4), 519–527 (2016).
pubmed: 28032104
pmcid: 5186742
Ali, S. M. et al. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana). Appl Microbiol Biotechnol. 101(1), 253–286. https://doi.org/10.1007/s00253-016-7872-2 (2017).
doi: 10.1007/s00253-016-7872-2
pubmed: 27743045
Santos, P. P. et al. Antibacterial activity of the venom of the Ponerine ant Pachycondyla striata (Formicidae: Ponerinae). Int J Trop Insect Sci. 40(2), 393–402. https://doi.org/10.1007/s42690-019-00090-x (2020).
doi: 10.1007/s42690-019-00090-x
Iji, M., Chindo, I. & Okpanachi, C. Isolation and Identification of the Scent Volatiles of the Male Kraussaria angulifera. J. Pure Appl. Sci. 20(3), 248. https://doi.org/10.5455/sf.30824 (2020).
doi: 10.5455/sf.30824
Kekeunou, S. et al. Nutritional Composition of African Edible Acridians. In: Adam Mariod A, éditeur. African edible insects as alternative source of food, oil, protein and bioactive components. Cham: Springer International Publishing. 169–193 (2020).
Mariod, A. A. Nutrient Composition of Desert Locust (Schistocerca gregaria). In: Adam Mariod A, éditeur. African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components. Cham: Springer International Publishing. 257–263 https://doi.org/10.1007/978-3-030-32952-5_18 (2020).
van Huis A. Medical and stimulating properties ascribed to arthropods and their products in sub-saharan Africa. Insects in Oral Literature and Traditions. Peeters. 367–382 (2002).