Proteomic profiling identifies SPP1 associated with rapidly progressive interstitial lung disease in anti-MDA5-positive dermatomyositis.

Biomarker Dermatomyositis Interstitial lung disease MDA5 RP-ILD

Journal

Arthritis research & therapy
ISSN: 1478-6362
Titre abrégé: Arthritis Res Ther
Pays: England
ID NLM: 101154438

Informations de publication

Date de publication:
02 Jan 2024
Historique:
received: 21 09 2023
accepted: 18 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

Anti-melanoma differentiation-associated gene five antibody positive (MDA5 Plasma samples from 20 MDA5 A total of 413 differentially expressed proteins (DEPs) were detected between the MDA5 This study provides novel insights into the pathogenesis of RP-ILD development in MDA5

Sections du résumé

BACKGROUND BACKGROUND
Anti-melanoma differentiation-associated gene five antibody positive (MDA5
METHODS METHODS
Plasma samples from 20 MDA5
RESULTS RESULTS
A total of 413 differentially expressed proteins (DEPs) were detected between the MDA5
CONCLUSION CONCLUSIONS
This study provides novel insights into the pathogenesis of RP-ILD development in MDA5

Identifiants

pubmed: 38167532
doi: 10.1186/s13075-023-03243-z
pii: 10.1186/s13075-023-03243-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9

Subventions

Organisme : National Natural Science Foundation
ID : 82271844
Organisme : National Natural Science Foundation
ID : 82302041
Organisme : National Natural Science Foundation
ID : 81971533
Organisme : National Natural Science Foundation
ID : 82171794

Informations de copyright

© 2023. The Author(s).

Références

Jin Q, Fu L, Yang H, Chen X, Lin S, Huang Z, et al. Peripheral lymphocyte count defines the clinical phenotypes and prognosis in patients with anti-MDA5-positive dermatomyositis. J Intern Med. 2023;293(4):494–507.
pubmed: 36682032 doi: 10.1111/joim.13607
Xu L, You H, Wang L, Lv C, Yuan F, Li J, et al. Identification of three different phenotypes in anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis patients: implications for prediction of rapidly progressive interstitial lung disease. Arthritis Rheumatol. 2023;75(4):609–19.
pubmed: 35849805 doi: 10.1002/art.42308
Allenbach Y, Uzunhan Y, Toquet S, Leroux G, Gallay L, Marquet A, et al. Different phenotypes in dermatomyositis associated with anti-MDA5 antibody: Study of 121 cases. Neurology. 2020;95(1):e70–8.
pubmed: 32487712 pmcid: 7371381 doi: 10.1212/WNL.0000000000009727
Lian X, Zou J, Guo Q, Chen S, Lu L, Wang R, et al. Mortality risk prediction in amyopathic dermatomyositis associated with interstitial lung disease: the FLAIR model. Chest. 2020;158(4):1535–45.
pubmed: 32428508 doi: 10.1016/j.chest.2020.04.057
Zhu Y, Wang L, Sun Y, Wang J, Lv C, You H, et al. Serum Krebs von den Lungen-6 concentrations reflect severity of anti-melanoma differentiation-associated protein 5 antibody positive dermatomyositis associated interstitial lung disease. Clin Exp Rheumatol. 2022;40(2):292–7.
pubmed: 34874831 doi: 10.55563/clinexprheumatol/zmn18h
Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292(7):344–7.
pubmed: 1090839 doi: 10.1056/NEJM197502132920706
Ledingham J, Snowden N, Ide Z. Diagnosis and early management of inflammatory arthritis. BMJ. 2017;358: j3248.
pubmed: 28751303 doi: 10.1136/bmj.j3248
Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384(2):117–28.
pubmed: 33200892 doi: 10.1056/NEJMoa2030183
Levey AS, Grams ME, Inker LA. Uses of GFR and albuminuria level in acute and chronic kidney disease. N Engl J Med. 2022;386(22):2120–8.
pubmed: 35648704 doi: 10.1056/NEJMra2201153
Jenkins DJA, Dehghan M, Mente A, et al. Glycemic index, glycemic load, and cardiovascular disease and mortality. N Engl J Med. 2021;384(14):1312–22.
pubmed: 33626252 doi: 10.1056/NEJMoa2007123
Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.
pubmed: 19377485 doi: 10.1038/nmeth.1322
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25(1):1–18.
doi: 10.18637/jss.v025.i01
Kassambara A, Mundt F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.5. https://CRAN.R-project.org/package=factoextra . Published 1 Apr 2020.
Ebrahimpoor M, Goeman JJ. Inflated false discovery rate due to volcano plots: problem and solutions. Brief Bioinform. 2021;22(5):bbab053.
pubmed: 33758907 pmcid: 8425469 doi: 10.1093/bib/bbab053
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Kolde R. pheatmap: Pretty Heatmaps. R package version 1.0.12. 2019.  https://CRAN.R-project.org/package=pheatmap . Published 4 Jan 2019.
Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.5.0. 2022. https://CRAN.R-project.org/package=ggpubr . Published 10 Feb 2023.
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.
pubmed: 30944313 pmcid: 6447622 doi: 10.1038/s41467-019-09234-6
Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2.
pubmed: 24930139 doi: 10.1093/bioinformatics/btu393
Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191.
pubmed: 16597342 pmcid: 1456994 doi: 10.1186/1471-2105-7-191
Ghandhi SA, Sinha A, Markatou M, Amundson SA. Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering. BMC Genomics. 2011;12:2.
pubmed: 21205307 pmcid: 3022823 doi: 10.1186/1471-2164-12-2
Scuricini A, Andreozzi F, Sgura C, et al. Osteopontin levels correlate with severity of diabetic cardiomyopathy in early stage of diabetes. Diabetes Res Clin Pract. 2023;203: 110885.
pubmed: 37598938 doi: 10.1016/j.diabres.2023.110885
Gazal S, Sacre K, Allanore Y, et al. Identification of secreted phosphoprotein 1 gene as a new rheumatoid arthritis susceptibility gene. Ann Rheum Dis. 2015;74(3): e19.
pubmed: 24448344 doi: 10.1136/annrheumdis-2013-204581
Spitzer D, Guérit S, Puetz T, et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood-brain barrier in acute ischemic stroke. Acta Neuropathol. 2022;144(2):305–37.
pubmed: 35752654 pmcid: 9288377 doi: 10.1007/s00401-022-02452-1
Qian J, Li R, Chen Z, Cao Z, Lu L, Fu Q. Type I interferon score is associated with the severity and poor prognosis in anti-MDA5 antibody-positive dermatomyositis patients. Front Immunol. 2023;14:1151695.
pubmed: 37006269 pmcid: 10063972 doi: 10.3389/fimmu.2023.1151695
Xu Y, Yang CS, Li YJ, Liu XD, Wang JN, Zhao Q, et al. Predictive factors of rapidly progressive-interstitial lung disease in patients with clinically amyopathic dermatomyositis. Clin Rheumatol. 2016;35(1):113–6.
pubmed: 26660480 doi: 10.1007/s10067-015-3139-z
Gono T, Masui K, Nishina N, Kawaguchi Y, Kawakami A, Ikeda K, et al. Risk prediction modeling based on a combination of initial serum biomarker levels in polymyositis/dermatomyositis-associated interstitial lung disease. Arthritis Rheumatol. 2021;73(4):677–86.
pubmed: 33118321 doi: 10.1002/art.41566
Chirco KR, Potempa LA. C-reactive protein as a mediator of complement activation and inflammatory signaling in age-related macular degeneration. Front Immunol. 2018;9:539.
pubmed: 29599782 pmcid: 5862805 doi: 10.3389/fimmu.2018.00539
De Buck M, Gouwy M, Wang JM, Van Snick J, Proost P, Struyf S, et al. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Rev. 2016;30:55–69.
pubmed: 26794452 doi: 10.1016/j.cytogfr.2015.12.010
Risitano AM, Mastellos DC, Huber-Lang M, Yancopoulou D, Garlanda C, Ciceri F, et al. Complement as a target in COVID-19? Nat Rev Immunol. 2020;20(6):343–4.
pubmed: 32327719 pmcid: 7187144 doi: 10.1038/s41577-020-0320-7
Gao T, Zhu L, Liu H, Zhang X, Wang T, Fu Y, et al. Highly pathogenic coronavirus N protein aggravates inflammation by MASP-2-mediated lectin complement pathway overactivation. Signal Transduct Target Ther. 2022;7(1):318.
pubmed: 36100602 pmcid: 9470675 doi: 10.1038/s41392-022-01133-5
Hamed ME, Naeem A, Alkadi H, Alamri AA, AlYami AS, AlJuryyan A, et al. Elevated expression levels of lung complement anaphylatoxin, neutrophil chemoattractant chemokine IL-8, and RANTES in MERS-CoV-infected patients: predictive biomarkers for disease severity and mortality. J Clin Immunol. 2021;41(7):1607–20.
pubmed: 34232441 pmcid: 8260346 doi: 10.1007/s10875-021-01061-z
Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46–64.
pubmed: 33077917 doi: 10.1038/s41581-020-00357-4
Posch W, Vosper J, Noureen A, Zaderer V, Witting C, Bertacchi G, et al. C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia. J Allergy Clin Immunol. 2021;147(6):2083–97. e6.
pubmed: 33852936 pmcid: 8056780 doi: 10.1016/j.jaci.2021.03.038
Lefrancais E, Ortiz-Munoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.
pubmed: 28329764 pmcid: 5663284 doi: 10.1038/nature21706
Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med. 2009;15(4):384–91.
pubmed: 19305412 pmcid: 2772164 doi: 10.1038/nm.1939
Cleary SJ, Kwaan N, Tian JJ, Calabrese DR, Mallavia B, Magnen M, et al. Complement activation on endothelium initiates antibody-mediated acute lung injury. J Clin Invest. 2020;130(11):5909–23.
pubmed: 32730229 pmcid: 7598054 doi: 10.1172/JCI138136
Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol. 2023;23(8):495–510.
pubmed: 36707719 doi: 10.1038/s41577-023-00834-4
Yadav H, Kor DJ. Platelets in the pathogenesis of acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L915–23.
pubmed: 26320157 pmcid: 4628982 doi: 10.1152/ajplung.00266.2015
Looney MR, Nguyen JX, Hu Y, Van Ziffle JA, Lowell CA, Matthay MA. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J Clin Invest. 2009;119(11):3450–61.
pubmed: 19809160 pmcid: 2769181
Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest. 2006;116(12):3211–9.
pubmed: 17143330 pmcid: 1679711 doi: 10.1172/JCI29499
Chen W, Janz DR, Bastarache JA, May AK, O’Neal HR Jr, Bernard GR, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis. Crit Care Med. 2015;43(4):801–7.
pubmed: 25559436 pmcid: 4359645 doi: 10.1097/CCM.0000000000000789
Erlich JM, Talmor DS, Cartin-Ceba R, Gajic O, Kor DJ. Prehospitalization antiplatelet therapy is associated with a reduced incidence of acute lung injury: a population-based cohort study. Chest. 2011;139(2):289–95.
pubmed: 20688925 doi: 10.1378/chest.10-0891
Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182(1):59-72.e15.
pubmed: 32492406 pmcid: 7254001 doi: 10.1016/j.cell.2020.05.032
Tomo S, Kumar KP, Roy D, Sankanagoudar S, Purohit P, Yadav D, et al. Complement activation and coagulopathy - an ominous duo in COVID19. Expert Rev Hematol. 2021;14(2):155–73.
pubmed: 33480807 doi: 10.1080/17474086.2021.1875813
Lu C, Liu Z, Klement JD, Yang D, Merting AD, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9(7): e002624.
pubmed: 34326167 pmcid: 8323468 doi: 10.1136/jitc-2021-002624
Sawaki D, Zhang Y, Mohamadi A, Pini M, Mezdari Z, Lipskaia L, et al. Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction. JCI Insight. 2023;8(8): e145811.
pubmed: 37092554 pmcid: 10243739 doi: 10.1172/jci.insight.145811
Klement JD, Paschall AV, Redd PS, Ibrahim ML, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128(12):5549–60.
pubmed: 30395540 pmcid: 6264631 doi: 10.1172/JCI123360
Leavenworth JW, Verbinnen B, Wang Q, Shen E, Cantor H. Intracellular osteopontin regulates homeostasis and function of natural killer cells. Proc Natl Acad Sci U S A. 2015;112(2):494–9.
pubmed: 25550515 doi: 10.1073/pnas.1423011112
Murthy S, Karkossa I, Schmidt C, Hoffmann A, Hagemann T, Rothe K, et al. Danger signal extracellular calcium initiates differentiation of monocytes into SPP1/osteopontin-producing macrophages. Cell Death Dis. 2022;13(1):53.
pubmed: 35022393 pmcid: 8755842 doi: 10.1038/s41419-022-04507-3
Clemente N, Raineri D, Cappellano G, Boggio E, Favero F, Soluri MF, et al. Osteopontin bridging innate and adaptive immunity in autoimmune diseases. J Immunol Res. 2016;2016:7675437.
pubmed: 28097158 pmcid: 5206443 doi: 10.1155/2016/7675437
Umemoto A, Kuwada T, Murata K, Shiokawa M, Ota S, Murotani Y, et al. Identification of anti-citrullinated osteopontin antibodies and increased inflammatory response by enhancement of osteopontin binding to fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther. 2023;25(1):25.
pubmed: 36804906 pmcid: 9936655 doi: 10.1186/s13075-023-03007-9
Shaath H, Vishnubalaji R, Elkord E, Alajez NM. Single-cell transcriptome analysis highlights a role for neutrophils and inflammatory macrophages in the pathogenesis of severe COVID-19. Cells. 2020;9(11):2374.
pubmed: 33138195 pmcid: 7693119 doi: 10.3390/cells9112374
Koshimune S, Kosaka M, Mizuno N, Yamamoto H, Miyamoto T, Ebisui K, et al. Prognostic value of OCT4A and SPP1C transcript variant co-expression in early-stage lung adenocarcinoma. BMC Cancer. 2020;20(1):521.
pubmed: 32503462 pmcid: 7275395 doi: 10.1186/s12885-020-06969-0
Papazoglou A, Huang M, Bulik M, Lafyatis A, Tabib T, Morse C, et al. Epigenetic regulation of profibrotic macrophages in systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 2022;74(12):2003–14.
pubmed: 35849803 pmcid: 9771864 doi: 10.1002/art.42286
Hatipoglu OF, Uctepe E, Opoku G, Wake H, Ikemura K, Ohtsuki T, et al. Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biomed Pharmacother. 2021;139: 111633.
pubmed: 34243624 doi: 10.1016/j.biopha.2021.111633
Xiao F, Tan JZ, Xu X, Zhu BL, Fang S, Wang XF. Increased osteopontin in muscle and serum from patients with idiopathic inflammatory myopathies. Clin Exp Rheumatol. 2015;33(3):399–404.
pubmed: 25936410
Gao Y, Zhao Q, Xie M, Yan X, Li Y, Zhang X, et al. Prognostic evaluation of serum osteopontin in patients with anti-MDA5 antibody-positive dermatomyositis associated interstitial lung disease. Cytokine. 2020;135:155209.
pubmed: 32738770 doi: 10.1016/j.cyto.2020.155209
Beijer E, Roodenburg-Benschop C, Schimmelpennink MC, Grutters JC, Meek B, Veltkamp M. Elevated serum amyloid A levels are not specific for sarcoidosis but associate with a fibrotic pulmonary phenotype. Cells. 2021;10(3):585.
pubmed: 33799927 pmcid: 7998834 doi: 10.3390/cells10030585
Gong R, Luo H, Long G, Xu J, Huang C, Zhou X, et al. Integrative proteomic profiling of lung tissues and blood in acute respiratory distress syndrome. Front Immunol. 2023;14:1158951.
pubmed: 37197655 pmcid: 10184823 doi: 10.3389/fimmu.2023.1158951

Auteurs

Yulu Qiu (Y)

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.

Xiaoke Feng (X)

Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Integrated Traditional Chinese and Western Medicine Institute of Nanjing Medical University, Nanjing, Jiangsu, China.

Chang Liu (C)

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.

Yumeng Shi (Y)

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.

Lingxiao Xu (L)

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.

Hanxiao You (H)

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.

Lei Wang (L)

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.

Chengyin Lv (C)

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.

Fang Wang (F)

Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China. wangfangheart@njmu.edu.cn.

Wenfeng Tan (W)

Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China. tw2006@njmu.edu.cn.

Classifications MeSH