Proteomic profiling identifies SPP1 associated with rapidly progressive interstitial lung disease in anti-MDA5-positive dermatomyositis.
Biomarker
Dermatomyositis
Interstitial lung disease
MDA5
RP-ILD
Journal
Arthritis research & therapy
ISSN: 1478-6362
Titre abrégé: Arthritis Res Ther
Pays: England
ID NLM: 101154438
Informations de publication
Date de publication:
02 Jan 2024
02 Jan 2024
Historique:
received:
21
09
2023
accepted:
18
12
2023
medline:
4
1
2024
pubmed:
4
1
2024
entrez:
3
1
2024
Statut:
epublish
Résumé
Anti-melanoma differentiation-associated gene five antibody positive (MDA5 Plasma samples from 20 MDA5 A total of 413 differentially expressed proteins (DEPs) were detected between the MDA5 This study provides novel insights into the pathogenesis of RP-ILD development in MDA5
Sections du résumé
BACKGROUND
BACKGROUND
Anti-melanoma differentiation-associated gene five antibody positive (MDA5
METHODS
METHODS
Plasma samples from 20 MDA5
RESULTS
RESULTS
A total of 413 differentially expressed proteins (DEPs) were detected between the MDA5
CONCLUSION
CONCLUSIONS
This study provides novel insights into the pathogenesis of RP-ILD development in MDA5
Identifiants
pubmed: 38167532
doi: 10.1186/s13075-023-03243-z
pii: 10.1186/s13075-023-03243-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9Subventions
Organisme : National Natural Science Foundation
ID : 82271844
Organisme : National Natural Science Foundation
ID : 82302041
Organisme : National Natural Science Foundation
ID : 81971533
Organisme : National Natural Science Foundation
ID : 82171794
Informations de copyright
© 2023. The Author(s).
Références
Jin Q, Fu L, Yang H, Chen X, Lin S, Huang Z, et al. Peripheral lymphocyte count defines the clinical phenotypes and prognosis in patients with anti-MDA5-positive dermatomyositis. J Intern Med. 2023;293(4):494–507.
pubmed: 36682032
doi: 10.1111/joim.13607
Xu L, You H, Wang L, Lv C, Yuan F, Li J, et al. Identification of three different phenotypes in anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis patients: implications for prediction of rapidly progressive interstitial lung disease. Arthritis Rheumatol. 2023;75(4):609–19.
pubmed: 35849805
doi: 10.1002/art.42308
Allenbach Y, Uzunhan Y, Toquet S, Leroux G, Gallay L, Marquet A, et al. Different phenotypes in dermatomyositis associated with anti-MDA5 antibody: Study of 121 cases. Neurology. 2020;95(1):e70–8.
pubmed: 32487712
pmcid: 7371381
doi: 10.1212/WNL.0000000000009727
Lian X, Zou J, Guo Q, Chen S, Lu L, Wang R, et al. Mortality risk prediction in amyopathic dermatomyositis associated with interstitial lung disease: the FLAIR model. Chest. 2020;158(4):1535–45.
pubmed: 32428508
doi: 10.1016/j.chest.2020.04.057
Zhu Y, Wang L, Sun Y, Wang J, Lv C, You H, et al. Serum Krebs von den Lungen-6 concentrations reflect severity of anti-melanoma differentiation-associated protein 5 antibody positive dermatomyositis associated interstitial lung disease. Clin Exp Rheumatol. 2022;40(2):292–7.
pubmed: 34874831
doi: 10.55563/clinexprheumatol/zmn18h
Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292(7):344–7.
pubmed: 1090839
doi: 10.1056/NEJM197502132920706
Ledingham J, Snowden N, Ide Z. Diagnosis and early management of inflammatory arthritis. BMJ. 2017;358: j3248.
pubmed: 28751303
doi: 10.1136/bmj.j3248
Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384(2):117–28.
pubmed: 33200892
doi: 10.1056/NEJMoa2030183
Levey AS, Grams ME, Inker LA. Uses of GFR and albuminuria level in acute and chronic kidney disease. N Engl J Med. 2022;386(22):2120–8.
pubmed: 35648704
doi: 10.1056/NEJMra2201153
Jenkins DJA, Dehghan M, Mente A, et al. Glycemic index, glycemic load, and cardiovascular disease and mortality. N Engl J Med. 2021;384(14):1312–22.
pubmed: 33626252
doi: 10.1056/NEJMoa2007123
Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.
pubmed: 19377485
doi: 10.1038/nmeth.1322
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25(1):1–18.
doi: 10.18637/jss.v025.i01
Kassambara A, Mundt F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.5. https://CRAN.R-project.org/package=factoextra . Published 1 Apr 2020.
Ebrahimpoor M, Goeman JJ. Inflated false discovery rate due to volcano plots: problem and solutions. Brief Bioinform. 2021;22(5):bbab053.
pubmed: 33758907
pmcid: 8425469
doi: 10.1093/bib/bbab053
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.
pubmed: 27207943
doi: 10.1093/bioinformatics/btw313
Kolde R. pheatmap: Pretty Heatmaps. R package version 1.0.12. 2019. https://CRAN.R-project.org/package=pheatmap . Published 4 Jan 2019.
Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.5.0. 2022. https://CRAN.R-project.org/package=ggpubr . Published 10 Feb 2023.
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.
pubmed: 30944313
pmcid: 6447622
doi: 10.1038/s41467-019-09234-6
Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2.
pubmed: 24930139
doi: 10.1093/bioinformatics/btu393
Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191.
pubmed: 16597342
pmcid: 1456994
doi: 10.1186/1471-2105-7-191
Ghandhi SA, Sinha A, Markatou M, Amundson SA. Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering. BMC Genomics. 2011;12:2.
pubmed: 21205307
pmcid: 3022823
doi: 10.1186/1471-2164-12-2
Scuricini A, Andreozzi F, Sgura C, et al. Osteopontin levels correlate with severity of diabetic cardiomyopathy in early stage of diabetes. Diabetes Res Clin Pract. 2023;203: 110885.
pubmed: 37598938
doi: 10.1016/j.diabres.2023.110885
Gazal S, Sacre K, Allanore Y, et al. Identification of secreted phosphoprotein 1 gene as a new rheumatoid arthritis susceptibility gene. Ann Rheum Dis. 2015;74(3): e19.
pubmed: 24448344
doi: 10.1136/annrheumdis-2013-204581
Spitzer D, Guérit S, Puetz T, et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood-brain barrier in acute ischemic stroke. Acta Neuropathol. 2022;144(2):305–37.
pubmed: 35752654
pmcid: 9288377
doi: 10.1007/s00401-022-02452-1
Qian J, Li R, Chen Z, Cao Z, Lu L, Fu Q. Type I interferon score is associated with the severity and poor prognosis in anti-MDA5 antibody-positive dermatomyositis patients. Front Immunol. 2023;14:1151695.
pubmed: 37006269
pmcid: 10063972
doi: 10.3389/fimmu.2023.1151695
Xu Y, Yang CS, Li YJ, Liu XD, Wang JN, Zhao Q, et al. Predictive factors of rapidly progressive-interstitial lung disease in patients with clinically amyopathic dermatomyositis. Clin Rheumatol. 2016;35(1):113–6.
pubmed: 26660480
doi: 10.1007/s10067-015-3139-z
Gono T, Masui K, Nishina N, Kawaguchi Y, Kawakami A, Ikeda K, et al. Risk prediction modeling based on a combination of initial serum biomarker levels in polymyositis/dermatomyositis-associated interstitial lung disease. Arthritis Rheumatol. 2021;73(4):677–86.
pubmed: 33118321
doi: 10.1002/art.41566
Chirco KR, Potempa LA. C-reactive protein as a mediator of complement activation and inflammatory signaling in age-related macular degeneration. Front Immunol. 2018;9:539.
pubmed: 29599782
pmcid: 5862805
doi: 10.3389/fimmu.2018.00539
De Buck M, Gouwy M, Wang JM, Van Snick J, Proost P, Struyf S, et al. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Rev. 2016;30:55–69.
pubmed: 26794452
doi: 10.1016/j.cytogfr.2015.12.010
Risitano AM, Mastellos DC, Huber-Lang M, Yancopoulou D, Garlanda C, Ciceri F, et al. Complement as a target in COVID-19? Nat Rev Immunol. 2020;20(6):343–4.
pubmed: 32327719
pmcid: 7187144
doi: 10.1038/s41577-020-0320-7
Gao T, Zhu L, Liu H, Zhang X, Wang T, Fu Y, et al. Highly pathogenic coronavirus N protein aggravates inflammation by MASP-2-mediated lectin complement pathway overactivation. Signal Transduct Target Ther. 2022;7(1):318.
pubmed: 36100602
pmcid: 9470675
doi: 10.1038/s41392-022-01133-5
Hamed ME, Naeem A, Alkadi H, Alamri AA, AlYami AS, AlJuryyan A, et al. Elevated expression levels of lung complement anaphylatoxin, neutrophil chemoattractant chemokine IL-8, and RANTES in MERS-CoV-infected patients: predictive biomarkers for disease severity and mortality. J Clin Immunol. 2021;41(7):1607–20.
pubmed: 34232441
pmcid: 8260346
doi: 10.1007/s10875-021-01061-z
Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46–64.
pubmed: 33077917
doi: 10.1038/s41581-020-00357-4
Posch W, Vosper J, Noureen A, Zaderer V, Witting C, Bertacchi G, et al. C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia. J Allergy Clin Immunol. 2021;147(6):2083–97. e6.
pubmed: 33852936
pmcid: 8056780
doi: 10.1016/j.jaci.2021.03.038
Lefrancais E, Ortiz-Munoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.
pubmed: 28329764
pmcid: 5663284
doi: 10.1038/nature21706
Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med. 2009;15(4):384–91.
pubmed: 19305412
pmcid: 2772164
doi: 10.1038/nm.1939
Cleary SJ, Kwaan N, Tian JJ, Calabrese DR, Mallavia B, Magnen M, et al. Complement activation on endothelium initiates antibody-mediated acute lung injury. J Clin Invest. 2020;130(11):5909–23.
pubmed: 32730229
pmcid: 7598054
doi: 10.1172/JCI138136
Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol. 2023;23(8):495–510.
pubmed: 36707719
doi: 10.1038/s41577-023-00834-4
Yadav H, Kor DJ. Platelets in the pathogenesis of acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L915–23.
pubmed: 26320157
pmcid: 4628982
doi: 10.1152/ajplung.00266.2015
Looney MR, Nguyen JX, Hu Y, Van Ziffle JA, Lowell CA, Matthay MA. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J Clin Invest. 2009;119(11):3450–61.
pubmed: 19809160
pmcid: 2769181
Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest. 2006;116(12):3211–9.
pubmed: 17143330
pmcid: 1679711
doi: 10.1172/JCI29499
Chen W, Janz DR, Bastarache JA, May AK, O’Neal HR Jr, Bernard GR, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis. Crit Care Med. 2015;43(4):801–7.
pubmed: 25559436
pmcid: 4359645
doi: 10.1097/CCM.0000000000000789
Erlich JM, Talmor DS, Cartin-Ceba R, Gajic O, Kor DJ. Prehospitalization antiplatelet therapy is associated with a reduced incidence of acute lung injury: a population-based cohort study. Chest. 2011;139(2):289–95.
pubmed: 20688925
doi: 10.1378/chest.10-0891
Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182(1):59-72.e15.
pubmed: 32492406
pmcid: 7254001
doi: 10.1016/j.cell.2020.05.032
Tomo S, Kumar KP, Roy D, Sankanagoudar S, Purohit P, Yadav D, et al. Complement activation and coagulopathy - an ominous duo in COVID19. Expert Rev Hematol. 2021;14(2):155–73.
pubmed: 33480807
doi: 10.1080/17474086.2021.1875813
Lu C, Liu Z, Klement JD, Yang D, Merting AD, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9(7): e002624.
pubmed: 34326167
pmcid: 8323468
doi: 10.1136/jitc-2021-002624
Sawaki D, Zhang Y, Mohamadi A, Pini M, Mezdari Z, Lipskaia L, et al. Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction. JCI Insight. 2023;8(8): e145811.
pubmed: 37092554
pmcid: 10243739
doi: 10.1172/jci.insight.145811
Klement JD, Paschall AV, Redd PS, Ibrahim ML, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128(12):5549–60.
pubmed: 30395540
pmcid: 6264631
doi: 10.1172/JCI123360
Leavenworth JW, Verbinnen B, Wang Q, Shen E, Cantor H. Intracellular osteopontin regulates homeostasis and function of natural killer cells. Proc Natl Acad Sci U S A. 2015;112(2):494–9.
pubmed: 25550515
doi: 10.1073/pnas.1423011112
Murthy S, Karkossa I, Schmidt C, Hoffmann A, Hagemann T, Rothe K, et al. Danger signal extracellular calcium initiates differentiation of monocytes into SPP1/osteopontin-producing macrophages. Cell Death Dis. 2022;13(1):53.
pubmed: 35022393
pmcid: 8755842
doi: 10.1038/s41419-022-04507-3
Clemente N, Raineri D, Cappellano G, Boggio E, Favero F, Soluri MF, et al. Osteopontin bridging innate and adaptive immunity in autoimmune diseases. J Immunol Res. 2016;2016:7675437.
pubmed: 28097158
pmcid: 5206443
doi: 10.1155/2016/7675437
Umemoto A, Kuwada T, Murata K, Shiokawa M, Ota S, Murotani Y, et al. Identification of anti-citrullinated osteopontin antibodies and increased inflammatory response by enhancement of osteopontin binding to fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther. 2023;25(1):25.
pubmed: 36804906
pmcid: 9936655
doi: 10.1186/s13075-023-03007-9
Shaath H, Vishnubalaji R, Elkord E, Alajez NM. Single-cell transcriptome analysis highlights a role for neutrophils and inflammatory macrophages in the pathogenesis of severe COVID-19. Cells. 2020;9(11):2374.
pubmed: 33138195
pmcid: 7693119
doi: 10.3390/cells9112374
Koshimune S, Kosaka M, Mizuno N, Yamamoto H, Miyamoto T, Ebisui K, et al. Prognostic value of OCT4A and SPP1C transcript variant co-expression in early-stage lung adenocarcinoma. BMC Cancer. 2020;20(1):521.
pubmed: 32503462
pmcid: 7275395
doi: 10.1186/s12885-020-06969-0
Papazoglou A, Huang M, Bulik M, Lafyatis A, Tabib T, Morse C, et al. Epigenetic regulation of profibrotic macrophages in systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 2022;74(12):2003–14.
pubmed: 35849803
pmcid: 9771864
doi: 10.1002/art.42286
Hatipoglu OF, Uctepe E, Opoku G, Wake H, Ikemura K, Ohtsuki T, et al. Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biomed Pharmacother. 2021;139: 111633.
pubmed: 34243624
doi: 10.1016/j.biopha.2021.111633
Xiao F, Tan JZ, Xu X, Zhu BL, Fang S, Wang XF. Increased osteopontin in muscle and serum from patients with idiopathic inflammatory myopathies. Clin Exp Rheumatol. 2015;33(3):399–404.
pubmed: 25936410
Gao Y, Zhao Q, Xie M, Yan X, Li Y, Zhang X, et al. Prognostic evaluation of serum osteopontin in patients with anti-MDA5 antibody-positive dermatomyositis associated interstitial lung disease. Cytokine. 2020;135:155209.
pubmed: 32738770
doi: 10.1016/j.cyto.2020.155209
Beijer E, Roodenburg-Benschop C, Schimmelpennink MC, Grutters JC, Meek B, Veltkamp M. Elevated serum amyloid A levels are not specific for sarcoidosis but associate with a fibrotic pulmonary phenotype. Cells. 2021;10(3):585.
pubmed: 33799927
pmcid: 7998834
doi: 10.3390/cells10030585
Gong R, Luo H, Long G, Xu J, Huang C, Zhou X, et al. Integrative proteomic profiling of lung tissues and blood in acute respiratory distress syndrome. Front Immunol. 2023;14:1158951.
pubmed: 37197655
pmcid: 10184823
doi: 10.3389/fimmu.2023.1158951