A light-activatable theranostic combination for ratiometric hypoxia imaging and oxygen-deprived drug activity enhancement.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
02 Jan 2024
02 Jan 2024
Historique:
received:
28
12
2022
accepted:
13
12
2023
medline:
4
1
2024
pubmed:
4
1
2024
entrez:
3
1
2024
Statut:
epublish
Résumé
While performing oxygen-related tumour treatments such as chemotherapy and photodynamic therapy, real-time monitoring hypoxia of tumour is of great value and significance. Here, we design a theranostic combination for light-activated ratiometric hypoxia imaging, hypoxia modulating and prodrug activation. This combination consisted of an oxygen-sensitive near-infrared-emitting ratiometric phosphorescence probe and a hypoxia-activated prodrug-loaded covalent organic framework. In this combination, the probe plays two roles, including quantitative monitoring of oxygen concentration by ratiometric imaging and consuming the oxygen of tumour under light excitation by photodynamic therapy. Meanwhile, the enhanced hypoxia microenvironment of tumour can raise the cytotoxicity of prodrug loaded in covalent organic framework, resulting in boosting antitumour therapeutic effects in vivo. This theranostic combination can precisely provide therapeutic regime and screen hypoxia-activated prodrugs based on real-time tumour hypoxia level, offering a strategy to develop hypoxia mediated tumour theranostics with hypoxia targeted prodrugs.
Identifiants
pubmed: 38167737
doi: 10.1038/s41467-023-44429-y
pii: 10.1038/s41467-023-44429-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
153Subventions
Organisme : National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
ID : 92163214
Organisme : Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
ID : BK20202002
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 52333003
Informations de copyright
© 2024. The Author(s).
Références
Höckel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).
pubmed: 11181773
doi: 10.1093/jnci/93.4.266
Zhou, J., Schmid, T., Schnitzer, S. & Brüne, B. Tumor hypoxia and cancer progression. Cancer Lett. 237, 10–21 (2006).
pubmed: 16002209
doi: 10.1016/j.canlet.2005.05.028
Kim, J.-W., Gao, P. & Dang, C. V. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev. 26, 291–298 (2007).
pubmed: 17415528
doi: 10.1007/s10555-007-9060-4
Finger, E. C. & Giaccia, A. J. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev. 29, 285–293 (2010).
pubmed: 20393783
pmcid: 4012531
doi: 10.1007/s10555-010-9224-5
Wu, Q. et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J. Hematol. Oncol. 15, 77 (2022).
pubmed: 35659268
pmcid: 9166526
doi: 10.1186/s13045-022-01292-6
Kopecka, J. et al. Hypoxia as a driver of resistance to immunotherapy. Drug Resist. Updat. 59, 100787 (2021).
pubmed: 34840068
doi: 10.1016/j.drup.2021.100787
Zhang, C., Qin, W.-J., Bai, X.-F. & Zhang, X.-Z. Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy. Nano Today 35, 100960 (2020).
doi: 10.1016/j.nantod.2020.100960
Wan, Y., Fu, L.-H., Li, C., Lin, J. & Huang, P. Conquering the hypoxia limitation for photodynamic therapy. Adv. Mater. 33, 2103978 (2021).
doi: 10.1002/adma.202103978
Song, G., Cheng, L., Chao, Y., Yang, K. & Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 29, 1700996 (2017).
doi: 10.1002/adma.201700996
Liu, Y. et al. Modulating hypoxia via nanomaterials chemistry for efficient treatment of solid tumors. Acc. Chem. Res. 51, 2502–2511 (2018).
pubmed: 30234960
doi: 10.1021/acs.accounts.8b00214
Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157 (2019).
pubmed: 31711497
pmcid: 6844052
doi: 10.1186/s12943-019-1089-9
Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4, 437–447 (2004).
pubmed: 15170446
doi: 10.1038/nrc1367
Liu, Z. et al. Nitroreductase-activatable theranostic molecules with high PDT efficiency under mild hypoxia based on a TADF fluorescein derivative. ACS Appl. Mater. Interfaces 11, 15426–15435 (2019).
pubmed: 30945838
doi: 10.1021/acsami.9b04488
Zhou, Y. et al. Azo-based small molecular hypoxia responsive theranostic for tumor-specific imaging and therapy. J. Control. Release 288, 14–22 (2018).
pubmed: 30170068
doi: 10.1016/j.jconrel.2018.08.036
Wei, J. et al. A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater. 28, 1706310 (2018).
doi: 10.1002/adfm.201706310
Zhu, H. et al. Dual-emissive platinum(II) metallacage with a sensitive oxygen response for imaging of hypoxia and imaging-guided chemotherapy. Angew. Chem. Int. Ed. 59, 20208–20214 (2020).
doi: 10.1002/anie.202009442
Zheng, X. et al. Tracking cancer metastasis in vivo by using an iridium-based hypoxia-activated optical oxygen nanosensor. Angew. Chem. Int. Ed. 54, 8094–8099 (2015).
doi: 10.1002/anie.201503067
Zheng, X. et al. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng. 1, 0057 (2017).
doi: 10.1038/s41551-017-0057
Xu, M. et al. Osteopontin targeted theranostic nanoprobes for laser-induced synergistic regression of vulnerable atherosclerotic plaques. Acta Pharm. Sin. B 12, 2014–2028 (2022).
pubmed: 35847489
doi: 10.1016/j.apsb.2021.12.020
Zhang, T.-X. et al. A hypoxia-responsive supramolecular formulation for imaging-guided photothermal therapy. Theranostics 12, 396–409 (2022).
pubmed: 34987652
pmcid: 8690909
doi: 10.7150/thno.67036
Yang, S. et al. Selectively potentiating hypoxia levels by combretastatin a4 nanomedicine: toward highly enhanced hypoxia-activated prodrug tirapazamine therapy for metastatic tumors. Adv. Mater. 31, 1805955 (2019).
doi: 10.1002/adma.201805955
Li, W. et al. A smart nanoplatform for synergistic starvation, hypoxia-active prodrug treatment and photothermal therapy mediated by near-infrared-II light. Chem. Eng. J. 405, 127027 (2021).
doi: 10.1016/j.cej.2020.127027
Wang, Y. et al. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano 11, 2227–2238 (2017).
pubmed: 28165223
pmcid: 5332348
doi: 10.1021/acsnano.6b08731
Zagorevskii, D. et al. A mass spectrometry study of tirapazamine and its metabolites: Insights into the mechanism of metabolic transformations and the characterization of reaction intermediates. J. Am. Soc. Mass Spectrom. 14, 881–892 (2003).
pubmed: 12892912
doi: 10.1016/S1044-0305(03)00334-9
Baran, N. & Konopleva, M. Molecular pathways: hypoxia-activated prodrugs in cancer therapy. Clin. Cancer Res. 23, 2382–2390 (2017).
pubmed: 28137923
pmcid: 5433896
doi: 10.1158/1078-0432.CCR-16-0895
Sahu, A., Kwon, I. & Tae, G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 228, 119578 (2020).
pubmed: 31678843
doi: 10.1016/j.biomaterials.2019.119578
Denny, W. A. The role of hypoxia-activated prodrugs in cancer therapy. Lancet Oncol. 1, 25–29 (2000).
pubmed: 11905684
doi: 10.1016/S1470-2045(00)00006-1
Kang, D., Cheung, S. T., Wong-Rolle, A. & Kim, J. Enamine N-oxides: synthesis and application to hypoxia-responsive prodrugs and imaging agents. ACS Central Sci. 7, 631–640 (2021).
doi: 10.1021/acscentsci.0c01586
Denny, W. A. Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncol. 6, 419–428 (2010).
pubmed: 20222798
doi: 10.2217/fon.10.1
Spiegelberg, L. et al. Hypoxia-activated prodrugs and (lack of) clinical progress: the need for hypoxia-based biomarker patient selection in phase III clinical trials. Clin. Transl. Radiat. Oncol. 15, 62–69 (2019).
pubmed: 30734002
pmcid: 6357685
Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998).
pubmed: 9537241
Song, X., Feng, L., Liang, C., Yang, K. & Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 16, 6145–6153 (2016).
pubmed: 27622835
doi: 10.1021/acs.nanolett.6b02365
Chen, S.-X. et al. A self-activating nanovesicle with oxygen-depleting capability for efficient hypoxia-responsive chemo-thermo cancer therapy. Biomaterials 269, 120533 (2021).
pubmed: 33228991
doi: 10.1016/j.biomaterials.2020.120533
Zheng, X. et al. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat. Commun. 6, 5834 (2015).
pubmed: 25556360
doi: 10.1038/ncomms6834
Serganova, I. et al. Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype. Clin. Cancer Res. 17, 6250–6261 (2011).
pubmed: 21844011
pmcid: 4217119
doi: 10.1158/1078-0432.CCR-11-0397
Lei, Z. et al. Regulation of HIF-1α and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS ONE 4, e7629 (2009).
pubmed: 19893619
pmcid: 2764090
doi: 10.1371/journal.pone.0007629
Ethirajan, M., Chen, Y., Joshi, P. & Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40, 340–362 (2011).
pubmed: 20694259
doi: 10.1039/B915149B
Xue, X. et al. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 9, 3653 (2018).
pubmed: 30194413
pmcid: 6128896
doi: 10.1038/s41467-018-06093-5
Liang, X., Chen, M., Bhattarai, P., Hameed, S. & Dai, Z. Perfluorocarbon@Porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer. ACS Nano 14, 13569–13583 (2020).
pubmed: 32915537
doi: 10.1021/acsnano.0c05617
Ge, L., Qiao, C., Tang, Y., Zhang, X. & Jiang, X. Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery. Nano Lett. 21, 3218–3224 (2021).
pubmed: 33724042
doi: 10.1021/acs.nanolett.1c00488
Borisov, S. M. & Klimant, I. Efficient metallation in diphenylether – a convenient route to luminescent platinum(II) complexes. Dyes and Pigments 83, 312–316 (2009).
doi: 10.1016/j.dyepig.2009.05.008
Cui, X., Zhao, J., Yang, P. & Sun, J. Zinc(ii) tetraphenyltetrabenzoporphyrin complex as triplet photosensitizer for triplet–triplet annihilation upconversion. Chem. Commun. 49, 10221–10223 (2013).
doi: 10.1039/c3cc45843a
Koren, K., Borisov, S. M., Saf, R. & Klimant, I. Strongly phosphorescent iridium(III)–porphyrins – new oxygen indicators with tuneable photophysical properties and functionalities. Eur. J. Inorg. Chem. 2011, 1531–1534 (2011).
pubmed: 22485072
pmcid: 3318677
doi: 10.1002/ejic.201100089