Qualification of a multiplexed tissue imaging assay and detection of novel patterns of HER2 heterogeneity in breast cancer.


Journal

NPJ breast cancer
ISSN: 2374-4677
Titre abrégé: NPJ Breast Cancer
Pays: United States
ID NLM: 101674891

Informations de publication

Date de publication:
02 Jan 2024
Historique:
received: 16 07 2022
accepted: 02 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

Emerging data suggests that HER2 intratumoral heterogeneity (ITH) is associated with therapy resistance, highlighting the need for new strategies to assess HER2 ITH. A promising approach is leveraging multiplexed tissue analysis techniques such as cyclic immunofluorescence (CyCIF), which enable visualization and quantification of 10-60 antigens at single-cell resolution from individual tissue sections. In this study, we qualified a breast cancer-specific antibody panel, including HER2, ER, and PR, for multiplexed tissue imaging. We then compared the performance of these antibodies against established clinical standards using pixel-, cell- and tissue-level analyses, utilizing 866 tissue cores (representing 294 patients). To ensure reliability, the CyCIF antibodies were qualified against HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) data from the same samples. Our findings demonstrate the successful qualification of a breast cancer antibody panel for CyCIF, showing high concordance with established clinical antibodies. Subsequently, we employed the qualified antibodies, along with antibodies for CD45, CD68, PD-L1, p53, Ki67, pRB, and AR, to characterize 567 HER2+ invasive breast cancer samples from 189 patients. Through single-cell analysis, we identified four distinct cell clusters within HER2+ breast cancer exhibiting heterogeneous HER2 expression. Furthermore, these clusters displayed variations in ER, PR, p53, AR, and PD-L1 expression. To quantify the extent of heterogeneity, we calculated heterogeneity scores based on the diversity among these clusters. Our analysis revealed expression patterns that are relevant to breast cancer biology, with correlations to HER2 ITH and potential relevance to clinical outcomes.

Identifiants

pubmed: 38167908
doi: 10.1038/s41523-023-00605-3
pii: 10.1038/s41523-023-00605-3
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2

Subventions

Organisme : Susan G. Komen (Susan G. Komen Breast Cancer Foundation)
ID : CCR18547597
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U54CA225088
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : P50CA168504
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R37CA269499
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U54-CA225088
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U54-CA225088
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U54-CA225088

Informations de copyright

© 2024. The Author(s).

Références

De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).
pubmed: 28706266 doi: 10.1038/nrc.2017.51
Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).
pubmed: 29686425 pmcid: 5998822 doi: 10.1038/s41591-018-0014-x
McQuade, J. L., Daniel, C. R., Helmink, B. A. & Wargo, J. A. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20, e77–e91 (2019).
pubmed: 30712808 doi: 10.1016/S1470-2045(18)30952-5
Gown, A. M. Current issues in ER and HER2 testing by IHC in breast cancer. Mod. Pathol. 21, S8–S15 (2008).
pubmed: 18437174 doi: 10.1038/modpathol.2008.34
Allison, K. H. et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J. Clin. Oncol. 38, 1346–1366 (2020).
pubmed: 31928404 doi: 10.1200/JCO.19.02309
Lindstrom, L. S. et al. Intratumor heterogeneity of the estrogen receptor and the long-term risk of fatal breast cancer. J. Natl. Cancer Inst. 110, 726–733 (2018).
pubmed: 29361175 pmcid: 6037086 doi: 10.1093/jnci/djx270
Wolff, A. C. et al. HER2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline focused update summary. J. Oncol. Pract. 14, 437–441 (2018).
pubmed: 29920138 doi: 10.1200/JOP.18.00206
Lin, L., Sirohi, D., Coleman, J. F. & Gulbahce, H. E. American Society of Clinical Oncology/College of American Pathologists 2018 Focused Update of Breast Cancer HER2 FISH Testing GuidelinesResults From a National Reference Laboratory. Am. J. Clin. Pathol. 152, 479–485 (2019).
pubmed: 31172196 doi: 10.1093/ajcp/aqz061
Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).
pubmed: 3798106 doi: 10.1126/science.3798106
Hayes, D. F. HER2 and breast cancer - a phenomenal success story. N. Engl. J. Med. 381, 1284–1286 (2019).
pubmed: 31502769 doi: 10.1056/NEJMcibr1909386
Hou, Y. et al. HER2 intratumoral heterogeneity is independently associated with incomplete response to anti-HER2 neoadjuvant chemotherapy in HER2-positive breast carcinoma. Breast Cancer Res. Treat. 166, 447–457 (2017).
pubmed: 28799059 doi: 10.1007/s10549-017-4453-8
Pastorello, R. G. et al. Clinico-pathologic predictors of patterns of residual disease following neoadjuvant chemotherapy for breast cancer. Mod. Pathol. 34, 875–882 (2021).
pubmed: 33219297 doi: 10.1038/s41379-020-00714-5
Gianni, L. et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 25–32 (2012).
pubmed: 22153890 doi: 10.1016/S1470-2045(11)70336-9
Hurvitz, S. A. et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 19, 115–126 (2018).
pubmed: 29175149 doi: 10.1016/S1470-2045(17)30716-7
Schneeweiss, A. et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol 24, 2278–2284 (2013).
Waks, A.G. et al. A prospective trial of treatment de-escalation following neoadjuvant paclitaxel/trastuzumab/pertuzumab in HER2-positive breast cancer. NPJ Breast Cancer 8, 63 (2022).
Vernieri, C. et al. Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: current knowledge, new research directions and therapeutic perspectives. Crit. Rev. Oncol. Hematol. 139, 53–66 (2019).
pubmed: 31112882 doi: 10.1016/j.critrevonc.2019.05.001
Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).
pubmed: 24529560 doi: 10.1016/S0140-6736(13)62422-8
Baros, I. V. et al. Internodal HER2 heterogeneity of axillary lymph node metastases in breast cancer patients. Bosn. J. Basic Med Sci. 19, 242–248 (2019).
pubmed: 30957723 pmcid: 6716091
Lee, H. J. et al. HER2 heterogeneity affects trastuzumab responses and survival in patients with HER2-positive metastatic breast cancer. Am. J. Clin. Pathol. 142, 755–766 (2014).
pubmed: 25389328 doi: 10.1309/AJCPIRL4GUVGK3YX
Navin, N. et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010).
pubmed: 19903760 pmcid: 2798832 doi: 10.1101/gr.099622.109
Ahn, S., Woo, J. W., Lee, K. & Park, S. Y. HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J. Pathol. Transl. Med. 54, 34–44 (2020).
pubmed: 31693827 doi: 10.4132/jptm.2019.11.03
Hanna, W. M. et al. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod. Pathol. 27, 4–18 (2014).
pubmed: 23807776 doi: 10.1038/modpathol.2013.103
Marchio, C. et al. Evolving concepts in HER2 evaluation in breast cancer: heterogeneity, HER2-low carcinomas and beyond. Semin. Cancer Biol. 72, 123–135 (2021).
pubmed: 32112814 doi: 10.1016/j.semcancer.2020.02.016
Giugliano, F. et al. Unlocking the resistance to anti-HER2 treatments in breast cancer: the issue of HER2 spatial distribution. Cancers (Basel) 15, https://doi.org/10.3390/cancers15051385 (2023).
Vance, G. H. et al. Genetic heterogeneity in HER2 testing in breast cancer: panel summary and guidelines. Arch. Pathol. Lab. Med. 133, 611–612 (2009).
pubmed: 19391661 doi: 10.5858/133.4.611
Hosonaga, M. et al. HER2 heterogeneity is associated with poor survival in HER2-positive breast cancer. Int. J. Mol. Sci. 19, https://doi.org/10.3390/ijms19082158 (2018).
Song, H. et al. Intratumoral heterogeneity impacts the response to anti-neu antibody therapy. BMC Cancer 14, 647 (2014).
pubmed: 25179116 pmcid: 4161915 doi: 10.1186/1471-2407-14-647
Gaglia, G. et al. Temporal and spatial topography of cell proliferation in cancer. Nat. Cell Biol. 24, 316–326 (2022).
pubmed: 35292783 pmcid: 8959396 doi: 10.1038/s41556-022-00860-9
Filho, O. M. et al. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov. 11, 2474–2487 (2021).
pubmed: 33941592 pmcid: 8598376 doi: 10.1158/2159-8290.CD-20-1557
Seol, H. et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod. Pathol. 25, 938–948 (2012).
pubmed: 22388760 doi: 10.1038/modpathol.2012.36
Lee, H. J. et al. Clinicopathologic significance of the intratumoral heterogeneity of HER2 gene amplification in HER2-positive breast cancer patients treated with adjuvant trastuzumab. Am. J. Clin. Pathol. 144, 570–578 (2015).
pubmed: 26386078 doi: 10.1309/AJCP51HCGPOPWSCY
Lee, H. J. et al. Differential expression of major histocompatibility complex class I in subtypes of breast cancer is associated with estrogen receptor and interferon signaling. Oncotarget 7, 30119–30132 (2016).
pubmed: 27121061 pmcid: 5058668 doi: 10.18632/oncotarget.8798
Griguolo, G., Pascual, T., Dieci, M. V., Guarneri, V. & Prat, A. Interaction of host immunity with HER2-targeted treatment and tumor heterogeneity in HER2-positive breast cancer. J. Immunother. Cancer 7, 90 (2019).
pubmed: 30922362 pmcid: 6439986 doi: 10.1186/s40425-019-0548-6
Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).
pubmed: 26399630 doi: 10.1038/ncomms9390
Lin, J. R., Fallahi-Sichani, M., Chen, J. Y. & Sorger, P. K. Cyclic immunofluorescence (CycIF), a highly multiplexed method for single-cell imaging. Curr. Protoc. Chem. Biol. 8, 251–264 (2016).
pubmed: 27925668 pmcid: 5233430 doi: 10.1002/cpch.14
Lin, J. R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife 7, https://doi.org/10.7554/eLife.31657 (2018).
Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022).
pubmed: 34824477 doi: 10.1038/s41592-021-01308-y
Muhlich, J. L. et al. Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR. Bioinformatics 38, 4613–4621 (2022).
pubmed: 35972352 pmcid: 9525007 doi: 10.1093/bioinformatics/btac544
Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 186, 363–381.e319 (2023).
pubmed: 36669472 pmcid: 10019067 doi: 10.1016/j.cell.2022.12.028
Troxell, M. L., Long, T., Hornick, J. L., Ambaye, A. B. & Jensen, K. C. Comparison of estrogen and progesterone receptor antibody reagents using proficiency testing data. Arch. Pathol. Lab. Med. 141, 1402–1412 (2017).
pubmed: 28714765 doi: 10.5858/arpa.2016-0497-OA
Sompuram, S. R., Vani, K., Schaedle, A. K., Balasubramanian, A. & Bogen, S. A. Quantitative assessment of immunohistochemistry laboratory performance by measuring analytic response curves and limits of detection. Arch. Pathol. Lab. Med. 142, 851–862 (2018).
pubmed: 29595317 doi: 10.5858/arpa.2017-0330-OA
Du, Z. et al. Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat. Protoc. 14, 2900–2930 (2019).
pubmed: 31534232 pmcid: 6959005 doi: 10.1038/s41596-019-0206-y
Rocha, R. M. et al. Rabbit antibodies for hormone receptors and HER2 evaluation in breast cancer. Rev. Assoc. Med. Bras. 55, 163–168 (2009).
pubmed: 19488652 doi: 10.1590/S0104-42302009000200020
Kluk, M. J. et al. Gauging NOTCH1 activation in cancer using immunohistochemistry. PLoS One 8, e67306 (2013).
pubmed: 23825651 pmcid: 3688991 doi: 10.1371/journal.pone.0067306
Lu, G. et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell 26, 222–234 (2014).
pubmed: 25117710 pmcid: 4169234 doi: 10.1016/j.ccr.2014.06.026
Goldberg, J. et al. The immunology of hormone receptor positive breast cancer. Front. Immunol. 12, 674192 (2021).
pubmed: 34135901 pmcid: 8202289 doi: 10.3389/fimmu.2021.674192
Spranger, S. et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med. 5, 200ra116 (2013).
pubmed: 23986400 pmcid: 4136707 doi: 10.1126/scitranslmed.3006504
Mehta, A. K., Kadel, S., Townsend, M. G., Oliwa, M. & Guerriero, J. L. Macrophage biology and mechanisms of immune suppression in breast cancer. Front. Immunol. 12, 643771 (2021).
pubmed: 33968034 pmcid: 8102870 doi: 10.3389/fimmu.2021.643771
Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 387, 9–20 (2022).
pubmed: 35665782 pmcid: 10561652 doi: 10.1056/NEJMoa2203690
Modi, S. et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J. Clin. Oncol. 38, 1887–1896 (2020).
pubmed: 32058843 pmcid: 7280051 doi: 10.1200/JCO.19.02318
Diéras, V. et al. Abstract PD8-02: trastuzumab deruxtecan (T-DXd) for advanced breast cancer patients (ABC), regardless HER2 status: A phase II study with biomarkers analysis (DAISY). Cancer Res. 82, https://doi.org/10.1158/1538-7445.Sabcs21-pd8-02 (2022).
Venetis, K. et al. HER2 low, ultra-low, and novel complementary biomarkers: expanding the spectrum of HER2 positivity in breast cancer. Front. Mol. Biosci. 9, 834651 (2022).
pubmed: 35372498 pmcid: 8965450 doi: 10.3389/fmolb.2022.834651
Lin, J. R. et al. High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers. Nat. Cancer 4, 1036–1052 (2023).
pubmed: 37349501 pmcid: 10368530 doi: 10.1038/s43018-023-00576-1
Denkert, C. et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. 33, 983–991 (2015).
pubmed: 25534375 doi: 10.1200/JCO.2014.58.1967
Keenan, T. E. et al. Clinical efficacy and molecular response correlates of the wee1 inhibitor adavosertib combined with cisplatin in patients with metastatic triple-negative breast cancer. Clin. Cancer Res. 27, 983–991 (2021).
pubmed: 33257427 doi: 10.1158/1078-0432.CCR-20-3089

Auteurs

Jennifer L Guerriero (JL)

Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA. JGuerriero@bwh.harvard.edu.
Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. JGuerriero@bwh.harvard.edu.
Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA. JGuerriero@bwh.harvard.edu.
Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA. JGuerriero@bwh.harvard.edu.

Jia-Ren Lin (JR)

Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA.
Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.

Ricardo G Pastorello (RG)

Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
Department of Pathology, Hospital Sírio Libanês, São Paulo, SP, 01308-050, Brazil.

Ziming Du (Z)

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China.

Yu-An Chen (YA)

Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.

Madeline G Townsend (MG)

Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.
Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.

Kenichi Shimada (K)

Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.
Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA.
Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.

Melissa E Hughes (ME)

Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.

Siyang Ren (S)

Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.

Nabihah Tayob (N)

Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.

Kelly Zheng (K)

Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.

Shaolin Mei (S)

Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.

Alyssa Patterson (A)

Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.

Krishan L Taneja (KL)

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Otto Metzger (O)

Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.

Sara M Tolaney (SM)

Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.

Nancy U Lin (NU)

Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.

Deborah A Dillon (DA)

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Stuart J Schnitt (SJ)

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Peter K Sorger (PK)

Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA.
Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.

Elizabeth A Mittendorf (EA)

Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.
Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA.
Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.

Sandro Santagata (S)

Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA.
Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.
Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Classifications MeSH