Efficient extraction of oleoresin from Ferula gummosa roots by natural deep eutectic solvent and its structure and chemical characterizations.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 Jan 2024
Historique:
received: 02 09 2023
accepted: 29 10 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

Deep eutectic solvents in the extraction of plant metabolites have found many advantages, such as low toxicity, biodegradability, low cost and ease of preparation over the conventional methods. This work aims to compare natural deep eutectic solvents in extraction and optimization of oleoresin from Ferula gummosa and determining its chemical and structure properties. Box-Behnken design was applied to optimize the extraction of oleoresin from Ferula gummosa using eutectic solvents. The variables of extraction were extraction time, temperature, and ratio of eutectic solvents. Six mixtures of eutectic solvents including choline chloride/urea, acetic acid, lactic acid, formic acid, formamide and glycerol at ratios of 2:1 and 3:1 were evaluated. The highest yields were obtained for choline chloride/formic acid, choline chloride/formamide. The quadratic regression equation was set up as a predictive model with an R

Identifiants

pubmed: 38167968
doi: 10.1038/s41598-023-46198-6
pii: 10.1038/s41598-023-46198-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

148

Informations de copyright

© 2024. The Author(s).

Références

Sadraei, H., Asghari, G. R., Hajhashemi, V., Kolagar, A. & Ebrahimi, M. Spasmolytic activity of essential oil and various extracts of Ferula gummosa Boiss. on ileum contractions. Phytomedicine 8, 370–376 (2001).
pubmed: 11695880 doi: 10.1078/0944-7113-00052
Abedi, D., Jalali, M. & Sadeghi, N. Composition and antimicrobial activity of oleogumresin of Ferula gumosa Bioss. essential oil using Alamar BlueTM. Res. Pharm. Sci. 3, 41–45 (2009).
Mortazaienezhad, F. & Sadeghian, M. M. Investigation of compounds from galbanum (Ferula gummosa) boiss. Asian J. Plant Sci. 5, 905–906 (2006).
doi: 10.3923/ajps.2006.905.906
Javidnia, K., Miri, R., Kamalinejad, M. & Edraki, N. Chemical composition of Ferula persica Wild. essential oil from Iran. Flavour Fragr. J. 20, 605–606 (2005).
doi: 10.1002/ffj.1496
Mohammadzadeh, M. J. et al. Physicochemical and emulsifying properties of Barijeh (Ferula gumosa) gum. Iran. J. Chem. Chem. Eng. (IJCCE) 26, 81–88 (2007).
Jalali, H. T., Ebrahimian, Z. J., Evtuguin, D. V. & Neto, C. P. Chemical composition of oleo-gum-resin from Ferula gummosa. Ind. Crops Prod. 33, 549–553 (2011).
doi: 10.1016/j.indcrop.2010.10.032
Ghasemi, Y., Faridi, P., Mehregan, I. & Mohagheghzadeh, A. Ferula gummosa fruits: An aromatic antimicrobial agent. Chem. Nat. Compd. 41, 311–314 (2005).
doi: 10.1007/s10600-005-0138-3
Iranshahy, M. & Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—A review. J. Ethnopharmacol. 134, 1–10 (2011).
pubmed: 21130854 doi: 10.1016/j.jep.2010.11.067
Jalali, H. T. et al. Deeper insight into the monoterpenic composition of Ferula gummosa oleo-gum-resin from Iran. Ind. Crops Prod. 36, 500–507 (2012).
doi: 10.1016/j.indcrop.2011.11.001
Jalali, H. T. et al. Assessment of the sesquiterpenic profile of Ferula gummosa oleo-gum-resin (galbanum) from Iran. Contributes to its valuation as a potential source of sesquiterpenic compounds. Ind. Crops Prod. 44, 185–191 (2013).
doi: 10.1016/j.indcrop.2012.10.031
Chemat, F. & Vian, M. A. Alternative Solvents for Natural Products Extraction (Springer, 2014).
doi: 10.1007/978-3-662-43628-8
Ahmad, I., Pertiwi, A. S., Kembaren, Y. H., Rahman, A. & Munâ, A. Application of natural deep eutectic solvent-based ultrasonic assisted extraction of total polyphenolic and caffeine content from Coffe Beans (Coffea Beans L.) for instant food products. J. Appl. Pharm. Sci. 8, 138–143 (2018).
Vian, M., Breil, C., Vernes, L., Chaabani, E. & Chemat, F. Green solvents for sample preparation in analytical chemistry. Curr. Opin. Green Sustain. Chem. 5, 44–48 (2017).
doi: 10.1016/j.cogsc.2017.03.010
Espino, M., de los Ángeles Fernández, M., Gomez, F. J. V. & Silva, M. F. Natural designer solvents for greening analytical chemistry. TrAC Trends Anal. Chem. 76, 126–136 (2016).
doi: 10.1016/j.trac.2015.11.006
Pan, M. et al. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydr. Polym. 176, 307–314 (2017).
pubmed: 28927613 doi: 10.1016/j.carbpol.2017.08.088
de los Ángeles Fernández, M., Espino, M., Gomez, F. J. V. & Silva, M. F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 239, 671–678 (2018).
doi: 10.1016/j.foodchem.2017.06.150
Paiva, A. et al. Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain Chem. Eng. 2, 1063–1071 (2014).
doi: 10.1021/sc500096j
Dai, Y., Witkamp, G.-J., Verpoorte, R. & Choi, Y. H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 187, 14–19 (2015).
pubmed: 25976992 doi: 10.1016/j.foodchem.2015.03.123
Shahbaz, K., Baroutian, S., Mjalli, F. S., Hashim, M. A. & AlNashef, I. M. Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochim. Acta. 527, 59–66 (2012).
doi: 10.1016/j.tca.2011.10.010
Maugeri, Z. & de María, P. D. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols. RSC Adv. 2, 421–425 (2012).
doi: 10.1039/C1RA00630D
Ribeiro, B. D., Coelho, M. A. Z. & Marrucho, I. M. Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. Eur. Food Res. Technol. 237, 965–975 (2013).
doi: 10.1007/s00217-013-2068-9
Syakfanaya, A. M., Saputri, F. C. & Mun’im, A. Simultaneously extraction of caffeine and chlorogenic acid from Coffea canephora bean using natural deep eutectic solvent-based ultrasonic assisted extraction. Pharmacogn. J. 11, 267–271 (2019).
doi: 10.5530/pj.2019.11.41
Yuniarti, E., Saputri, F. C. & Munâ, A. Application of the natural deep eutectic solvent choline chloride-sorbitol to extract chlorogenic acid and caffeine from green coffee beans (Coffea canephora). J. Appl. Pharm. Sci. 9, 82–90 (2019).
doi: 10.7324/JAPS.2019.90312
Nadia, J., Shahbaz, K., Ismail, M. & Farid, M. M. Approach for polygodial extraction from Pseudowintera colorata (Horopito) leaves using deep eutectic solvents. ACS Sustain. Chem. Eng. 6, 862–871 (2018).
doi: 10.1021/acssuschemeng.7b03221
Cao, J. et al. Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity. J. Pharm. Biomed. Anal. 158, 317–326 (2018).
pubmed: 29913356 doi: 10.1016/j.jpba.2018.06.007
Machmudah, S., Lestari, S. D., Kanda, H., Winardi, S. & Goto, M. Subcritical water extraction enhancement by adding deep eutectic solvent for extracting xanthone from mangosteen pericarps. J Supercrit. Fluids 133, 615–624 (2018).
doi: 10.1016/j.supflu.2017.06.012
Křížek, T. et al. Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids. J. Clean. Prod. 193, 391–396 (2018).
doi: 10.1016/j.jclepro.2018.05.080
Athanasiadis, V., Grigorakis, S., Lalas, S. & Makris, D. P. Highly efficient extraction of antioxidant polyphenols from Olea europaea leaves using an eco-friendly glycerol/glycine deep eutectic solvent. Waste Biomass Valoriz. 9, 1985–1992 (2018).
doi: 10.1007/s12649-017-9997-7
Liew, S. Q., Ngoh, G. C., Yusoff, R. & Teoh, W. H. Acid and deep eutectic solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatal. Agric. Biotechnol. 13, 1–11 (2018).
doi: 10.1016/j.bcab.2017.11.001
Ma, W. & Row, K. H. Optimized extraction of bioactive compounds from Herba Artemisiae Scopariae with ionic liquids and deep eutectic solvents. J. Liq. Chromatogr. Relat. Technol. 40, 459–466 (2017).
doi: 10.1080/10826076.2017.1322522
De Faria, E. L. P. et al. Deep eutectic solvents as efficient media for the extraction and recovery of cynaropicrin from Cynara cardunculus L. leaves. Int. J. Mol. Sci. 18, 2276 (2017).
pubmed: 29084184 pmcid: 5713246 doi: 10.3390/ijms18112276
Dai, Y., Verpoorte, R. & Choi, Y. H. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 159, 116–121 (2014).
pubmed: 24767033 doi: 10.1016/j.foodchem.2014.02.155
Huang, Y. et al. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 221, 1400–1405 (2017).
pubmed: 27979107 doi: 10.1016/j.foodchem.2016.11.013
Wang, T. et al. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents. J. Pharm. Biomed. Anal. 145, 339–345 (2017).
pubmed: 28710995 doi: 10.1016/j.jpba.2017.07.002
Zhao, B.-Y. et al. Biocompatible deep eutectic solvents based on choline chloride: Characterization and application to the extraction of rutin from Sophora japonica. ACS Sustain Chem. Eng. 3, 2746–2755 (2015).
doi: 10.1021/acssuschemeng.5b00619
Wei, Z. et al. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep. Purif. Technol. 149, 237–244 (2015).
doi: 10.1016/j.seppur.2015.05.015
Zahrina, I., Nasikin, M., Krisanti, E. & Mulia, K. Deacidification of palm oil using betaine monohydrate-based natural deep eutectic solvents. Food Chem. 240, 490–495 (2018).
pubmed: 28946302 doi: 10.1016/j.foodchem.2017.07.132
Manic, M. S., Najdanovic-Visak, V., da Ponte, M. N. & Visak, Z. P. Extraction of free fatty acids from soybean oil using ionic liquids or poly (ethyleneglycol) s. Aiche J. 57, 1344–1355 (2011).
doi: 10.1002/aic.12349
Depoorter, J. et al. Fully biosourced materials from combination of choline chloride-based deep eutectic solvents and guar gum. ACS Sustain. Chem. Eng. 7, 16747–16756 (2019).
doi: 10.1021/acssuschemeng.9b04228
Wei, Z.-F. et al. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind. Crops Prod. 63, 175–181 (2015).
doi: 10.1016/j.indcrop.2014.10.013
Peng, X. et al. Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. Sep. Purif. Technol. 157, 249–257 (2016).
doi: 10.1016/j.seppur.2015.10.065
Wang, M. et al. Ecofriendly mechanochemical extraction of bioactive compounds from plants with deep eutectic solvents. ACS Sustain. Chem. Eng. 5, 6297–6303 (2017).
doi: 10.1021/acssuschemeng.7b01378
Abbott, A. P., Boothby, D., Capper, G., Davies, D. L. & Rasheed, R. K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004).
pubmed: 15264850 doi: 10.1021/ja048266j
Sandra, P. & Bicchi, C. Capillary gas chromatography in essential oil analysis (1987).
Fernández, A. G., Adams, M. R. & Fernández-Díez, M. J. Table olives: Production and processing (Springer, 1997).
doi: 10.1007/978-1-4899-4683-6
Rafe, A. & Razavi, S. M. A. Effect of thermal treatment on chemical structure of β-lactoglobulin and basil seed gum mixture at different states by ATR-FTIR spectroscopy. Int. J. Food. Prop. 18, 2652–2664 (2015).
doi: 10.1080/10942912.2014.999864
Shahbazi, M., Rajabzadeh, G., Rafe, A., Ettelaie, R. & Ahmadi, S. J. The physico-mechanical and structural characteristics of blend film of poly (vinyl alcohol) with biodegradable polymers as affected by disorder-to-order conformational transition. Food Hydrocoll. 60, 393–404 (2016).
doi: 10.1016/j.foodhyd.2016.03.038
Chen, W. et al. Investigation on the thermal stability of deep eutectic solvents. Acta Phys. Chim. Sin. 34, 904–911 (2018).
doi: 10.3866/PKU.WHXB201712281
Shafie, M. H., Yusof, R. & Gan, C.-Y. Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: Optimization and characterization studies. Carbohydr. Polym. 216, 303–311 (2019).
pubmed: 31047070 doi: 10.1016/j.carbpol.2019.04.007
Wang, W., Li, X., Bao, X., Gao, L. & Tao, Y. Extraction of polysaccharides from black mulberry fruit and their effect on enhancing antioxidant activity. Int. J. Biol. Macromol. 120, 1420–1429 (2018).
pubmed: 30266643 doi: 10.1016/j.ijbiomac.2018.09.132
Shang, X., Chu, D., Zhang, J., Zheng, Y. & Li, Y. Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep. Purif. Technol. 259, 118169 (2021).
doi: 10.1016/j.seppur.2020.118169
Rios, J.-L. & Recio, M. C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 100, 80–84 (2005).
pubmed: 15964727 doi: 10.1016/j.jep.2005.04.025
Eftekhar, F., Yousefzadi, M. & Borhani, K. Antibacterial activity of the essential oil from Ferula gummosa seed. Fitoterapia 75, 758–759 (2004).
pubmed: 15567258 doi: 10.1016/j.fitote.2004.09.004
Yang, X. et al. Pomegranate peel pectin can be used as an effective emulsifier. Food Hydrocoll. 85, 30–38 (2018).
doi: 10.1016/j.foodhyd.2018.06.042
He, L. et al. Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC–ABTS+ assay. Food Bioprod. Process. 90, 215–223 (2012).
doi: 10.1016/j.fbp.2011.03.003
Manrique, G. D. & Lajolo, F. M. FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biol. Technol. 25, 99–107 (2002).
doi: 10.1016/S0925-5214(01)00160-0

Auteurs

Javad Radmard (J)

Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.

Ali Mohamadi Sani (A)

Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran. mohamadisani@yahoo.com.

Akram Arianfar (A)

Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.

Behrooz Mahmoodzadeh Vaziri (B)

Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.

Classifications MeSH