Feasibility of

177Lu Activity quantification CZT Hand-held gamma-camera Molecular imaging

Journal

EJNMMI physics
ISSN: 2197-7364
Titre abrégé: EJNMMI Phys
Pays: Germany
ID NLM: 101658952

Informations de publication

Date de publication:
03 Jan 2024
Historique:
received: 20 06 2023
accepted: 06 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

In image processing for activity quantification, the end goal is to produce a metric that is independent of the measurement geometry. Photon attenuation needs to be accounted for and can be accomplished utilizing spectral information, avoiding the need of additional image acquisitions. The aim of this work is to investigate the feasibility of A previously presented dual photopeak method, based on the differential attenuation for two photon energies, is adapted for the three photopeaks at 55 keV, 113 keV, and 208 keV for For phantom measurements at clinically relevant depths, the average (and standard deviation) in activity errors are 17% ± 9.6% (LEHR) and 2.9% ± 3.6% (MEGP). For patient measurements, deviations from activity estimates from planar images from a full-sized gamma-camera are 0% ± 21% (LEHR) and 16% ± 18% (MEGP). For mouse measurements, average deviations of - 16% (LEHR) and - 6% (MEGP) are obtained when compared to a small-animal SPECT/CT system. The MEGP collimator appears to be better suited for activity quantification, yielding a smaller variability in activity estimates, whereas the LEHR results are more severely affected by septal penetration. Activity quantification for

Sections du résumé

BACKGROUND BACKGROUND
In image processing for activity quantification, the end goal is to produce a metric that is independent of the measurement geometry. Photon attenuation needs to be accounted for and can be accomplished utilizing spectral information, avoiding the need of additional image acquisitions. The aim of this work is to investigate the feasibility of
METHODS METHODS
A previously presented dual photopeak method, based on the differential attenuation for two photon energies, is adapted for the three photopeaks at 55 keV, 113 keV, and 208 keV for
RESULTS RESULTS
For phantom measurements at clinically relevant depths, the average (and standard deviation) in activity errors are 17% ± 9.6% (LEHR) and 2.9% ± 3.6% (MEGP). For patient measurements, deviations from activity estimates from planar images from a full-sized gamma-camera are 0% ± 21% (LEHR) and 16% ± 18% (MEGP). For mouse measurements, average deviations of - 16% (LEHR) and - 6% (MEGP) are obtained when compared to a small-animal SPECT/CT system. The MEGP collimator appears to be better suited for activity quantification, yielding a smaller variability in activity estimates, whereas the LEHR results are more severely affected by septal penetration.
CONCLUSIONS CONCLUSIONS
Activity quantification for

Identifiants

pubmed: 38167976
doi: 10.1186/s40658-023-00602-2
pii: 10.1186/s40658-023-00602-2
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2

Subventions

Organisme : Cancerfonden
ID : 21-1754-Pj01H
Organisme : Fru Berta Kamprads Stiftelse
ID : FBKS-2020-13
Organisme : Fru Berta Kamprads Stiftelse
ID : FBKS-2019-44

Informations de copyright

© 2024. The Author(s).

Références

Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of
doi: 10.1056/NEJMoa1607427
Afshar-Oromieh A, Hetzheim H, Kratochwil C, Benesova M, Eder M, Neels OC, et al. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med. 2015;56(11):1697–705.
doi: 10.2967/jnumed.115.161299
Delker A, Fendler WP, Kratochwil C, Brunegraf A, Gosewisch A, Gildehaus FJ, et al. Dosimetry for
doi: 10.1007/s00259-015-3174-7
Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, et al.
doi: 10.2967/jnumed.115.158550
Kolstad A, Illidge T, Bolstad N, Spetalen S, Madsbu U, Stokke C, et al. Phase 1/2a study of
doi: 10.1182/bloodadvances.2020002583
Ebbers SC, Braat A, Moelker A, Stokkel MPM, Lam M, Barentsz MW. Intra-arterial versus standard intravenous administration of lutetium-177-DOTA-octreotate in patients with NET liver metastases: study protocol for a multicenter, randomized controlled trial (LUTIA trial). Trials. 2020;21(1):141.
doi: 10.1186/s13063-019-3888-0
Gulec SA, Baum R. Radio-guided surgery in neuroendocrine tumors. J Surg Oncol. 2007;96(4):309–15.
doi: 10.1002/jso.20868
Sadowski SM, Millo C, Neychev V, Aufforth R, Keutgen X, Glanville J, et al. Feasibility of radio-guided surgery with
doi: 10.1245/s10434-015-4857-9
Morganti S, Bertani E, Bocci V, Colandrea M, Collamati F, Cremonesi M, et al. Tumor-non-tumor discrimination by a β
doi: 10.1016/j.ejmp.2020.03.021
Sandblom V, Stahl I, Olofsson Bagge R, Forssell-Aronsson E. Evaluation of two intraoperative gamma detectors for assessment of
Roth D, Larsson E, Sundlöv A, Sjögreen Gleisner K. Characterisation of a hand-held CZT-based gamma camera for
doi: 10.1186/s40658-020-00313-y
Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40(2):37S-61S.
Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. 1991;10(3):408–12.
doi: 10.1109/42.97591
Sjögreen-Gleisner K. Scatter correction by deconvolution of planar whole-body scintillation-camera images using an image-based estimate of the signal-to-noise ratio. Eur J Nucl Med. 2012;39(Suppl 2):S304–53.
Strand SE, Persson BR. The dual photopeak-area method applied to scintillation camera measurements of effective depth and activity of in vivo
doi: 10.1007/BF00253685
Nosil J, Sethi V, Bland J, Kloiber R. Double peak attenuation method for estimating organ location. Phys Med Biol. 1987;32(11):1407–16.
doi: 10.1088/0031-9155/32/11/003
Kondev FG. Nuclear data sheets for A=177. Nucl Data Sheets. 2019;159(9):1–142.
doi: 10.1016/j.nds.2019.100514
He Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl Instrum Methods Phys Res, Sect A. 2001;463(1):250–67.
doi: 10.1016/S0168-9002(01)00223-6
Knoll P, Mirzaei S, Schwenkenbecher K, Barthel T. Performance evaluation of a solid-state detector based handheld gamma camera system. Front Biomed Technol. 2015;1(1):61–7.
Sundlöv A, Sjögreen-Gleisner K, Svensson J, Ljungberg M, Olsson T, Bernhardt P, et al. Individualised
doi: 10.1007/s00259-017-3678-4
Sundlöv A, Gustafsson J, Brolin G, Mortensen N, Hermann R, Bernhardt P, et al. Feasibility of simplifying renal dosimetry in
doi: 10.1186/s40658-018-0210-2
Sjögreen Gleisner K, Ljungberg M. Patient-specific whole-body attenuation correction maps from a CT system for conjugate-view-based activity quantification: method development and evaluation. Cancer Biother Radiopharm. 2012;27(10):652–64.
NEMA. NU 1-2012 Performance Measurements of Gamma Cameras. Rosslyn, Virginia: National Electrical Manufacturers Association; 2012.
Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4) [Internet]. National Institute of Standards and Technology. 2004 [cited 2018-01-26]. Available from: https://doi.org/10.18434/T4D01F .
Martinez LC, Calzado A, Rodriguez C, Gilarranz R, Manzanas MJ. A parametrization of the CT number of a substance and its use for stoichiometric calibration. Phys Med. 2012;28(1):33–42.
doi: 10.1016/j.ejmp.2011.02.001
Delker A, Ilhan H, Zach C, Brosch J, Gildehaus FJ, Lehner S, et al. The influence of early measurements onto the estimated kidney dose in [
doi: 10.1007/s11307-015-0839-3
Brolin G, Gustafsson J, Ljungberg M, Sjögreen Gleisner K. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in
doi: 10.1088/0031-9155/60/15/6131
Roth D, Larsson E, Ljungberg M, Sjögreen Gleisner K. Monte Carlo modelling of a compact CZT-based gamma camera with application to
Gustafsson J, Sundlöv A, Sjögreen Gleisner K. SPECT image segmentation for estimation of tumour volume and activity concentration in
doi: 10.1186/s13550-017-0262-7
Bugby SL, Lees JE, McKnight WK, Dawood NS. Stereoscopic portable hybrid gamma imaging for source depth estimation. Phys Med Biol. 2021;66(4):045031.
doi: 10.1088/1361-6560/abd955

Auteurs

Daniel Roth (D)

Medical Radiation Physics, Lund, Lund University, Lund, Sweden. Daniel.Roth@med.lu.se.

Erik Larsson (E)

Department of Radiation Physics, Skåne University Hospital, Lund, Sweden.

Joanna Strand (J)

Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden.
Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden.

Michael Ljungberg (M)

Medical Radiation Physics, Lund, Lund University, Lund, Sweden.

Katarina Sjögreen Gleisner (K)

Medical Radiation Physics, Lund, Lund University, Lund, Sweden.

Classifications MeSH