Self-assembly of the smallest and tightest molecular trefoil knot.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
02 Jan 2024
02 Jan 2024
Historique:
received:
21
07
2023
accepted:
07
12
2023
medline:
4
1
2024
pubmed:
4
1
2024
entrez:
3
1
2024
Statut:
epublish
Résumé
Molecular knots, whose synthesis presents many challenges, can play important roles in protein structure and function as well as in useful molecular materials, whose properties depend on the size of the knotted structure. Here we report the synthesis by self-assembly of molecular trefoil metallaknot with formula [Au
Identifiants
pubmed: 38168068
doi: 10.1038/s41467-023-44302-y
pii: 10.1038/s41467-023-44302-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
154Informations de copyright
© 2024. The Author(s).
Références
Liu, L. F., Depew, R. E. & Wang, J. C. Knotted single-stranded DNA rings—novel topological isomer of circular single-stranded DNA formed by treatment with escherichia-coli omega protein. J. Mol. Biol. 106, 439–452 (1976).
doi: 10.1016/0022-2836(76)90095-4
pubmed: 789893
Zhao, M. & Woodside, M. T. Mechanical strength of RNA knot in Zika virus protects against cellular defenses. Nat. Chem. Biol. 17, 975–981 (2021).
doi: 10.1038/s41589-021-00829-z
pubmed: 34253909
Taylor, W. R. A deeply knotted protein structure and how it might fold. Nature 406, 916–919 (2000).
doi: 10.1038/35022623
pubmed: 10972297
Dietrich-Buchecker, C. O. & Sauvage, J.-P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. 28, 189–192 (1989).
doi: 10.1002/anie.198901891
Dietrich-Buchecker, C. O., Guilhem, J., Pascard, C. & Sauvage, J.-P. Structure of a synthetic trefoil knot coordinated to two copper(I) centers. Angew. Chem. Int. Ed. 29, 1154–1156 (1990).
doi: 10.1002/anie.199011541
Ashbridge, Z. et al. Knotting matters: orderly molecular entanglements. Chem. Soc. Rev. 51, 7779–7809 (2022).
doi: 10.1039/D2CS00323F
pubmed: 35979715
pmcid: 9486172
Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017).
doi: 10.1002/anie.201702531
Forgan, R. S., Sauvage, J. P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).
doi: 10.1021/cr200034u
pubmed: 21692460
Fenlon, E. E. Open problems in chemical topology. Eur. J. Org. Chem. 5023–5035 (2008).
Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725–5464 (1995).
doi: 10.1021/cr00040a005
Sauvage, J. P. Interlacing molecular threads on transition-metals—catenands, catenates, and knots. Acc. Chem. Res. 23, 319–327 (1990).
doi: 10.1021/ar00178a001
Gao, W.-X., Feng, H.-J., Guo, B.-B., Lu, Y. & Jin, G.-X. Coordination-directed construction of molecular links. Chem. Rev. 120, 6288–6325 (2020).
doi: 10.1021/acs.chemrev.0c00321
pubmed: 32558562
Zhang, L., Lemonnier, J.-F., Acocella, A. & Leigh, D. A. Effects of knot tightness at the molecular level. PNAS 116, 2452–2457 (2019).
doi: 10.1073/pnas.1815570116
pubmed: 30683725
pmcid: 6377497
Song, Y. et al. Effects of turn-structure on folding and entanglement in artificial molecular overhand knots. Chem. Sci. 1826–1833 (2021).
Leigh, D. A. et al. Tying different knots in a molecular strand. Nature 584, 562–568 (2020).
doi: 10.1038/s41586-020-2614-0
pubmed: 32848222
Inomata, Y., Sawada, T. & Fujita, M. Metal-peptide torus knots from flexible short peptides. Chem. 6, 294–303 (2020).
doi: 10.1016/j.chempr.2019.12.009
Bourlier, J. et al. Direct synthesis and structural characterisation of tri- and tetra-nuclear silver metallaknotanes by self-assembly approach. Chem. Commun. 6191–6193 (2008).
Barran, P. E. et al. Active-metal template synthesis of a molecular trefoil knot. Angew. Chem. Int. Ed. 50, 12280–12284 (2011).
doi: 10.1002/anie.201105012
Danon, J. J. et al. Braiding a molecular knot with eight crossings. Science 355, 159–162 (2017).
doi: 10.1126/science.aal1619
pubmed: 28082585
Frisch, H. L. & Wasserman, E. Chemical topology. J. Am. Chem. Soc. 83, 3789–3795 (1961).
doi: 10.1021/ja01479a015
Dhaliwal, M. & Weinberg, N. How quickly do knotty molecules lose their energy as they grow? J. Phys. Org. Chem. 17, 793–797 (2004).
doi: 10.1002/poc.796
Puddephatt, R. J. Gold catenanes. J. Organomet. Chem. 792, 13–24 (2015).
doi: 10.1016/j.jorganchem.2014.12.003
Mingos, D. M. P., Yau, J., Menzer, S. & Williams, D. J. A gold(I) 2[catenane]. Angew. Chem. Int. Ed. 34, 1894–1895 (1995).
doi: 10.1002/anie.199518941
Yip, S. K., Cheng, E. C. C., Yuan, L. H., Zhu, N. & Yam, V. W. W. Supramolecular assembly of luminescent gold(I) alkynylcalix[4]crown-6 complexes with planar η
doi: 10.1002/anie.200460744
Koshevoy, I. O. et al. Intensely luminescent homoleptic alkynyl decanuclear gold(I) clusters and their cationic octanuclear phosphine derivatives. Inorg. Chem. 51, 7392–7403 (2012).
doi: 10.1021/ic300856h
pubmed: 22686420
Shi, Q. et al. Alkynyl- and phosphine-ligated quaternary Au(2)Ag(2) clusters featuring an alkynyl-AuAg motif for multicomponent coupling. RSC Adv. 10, 21650–21655 (2020).
doi: 10.1039/D0RA02178D
pubmed: 35518730
pmcid: 9054367
Hunks, W. J., MacDonald, M.-A., Jennings, M. C. & Puddephatt, R. J. Luminescent binuclear gold(I) ring complexes. Organometallics 19, 5063–5070 (2000).
doi: 10.1021/om000528c
Schmidbaur, H. & Schier, A. Aurophilic interactions as a subject of current research: an update. Chem. Soc. Rev. 41, 370–412 (2012).
doi: 10.1039/C1CS15182G
pubmed: 21863191
Habermehl, N. C., Eisler, D. J., Kirby, C. W., Yue, N. L. S. & Puddephatt, R. J. A structural probe for organogold(I) rings and [2]catenanes. Organometallics 25, 2921–2928 (2006).
doi: 10.1021/om0601706
Habermehl, N. C., Jennings, M. C., McArdle, C. P., Mohr, F. & Puddephatt, R. J. Selectivity in the self-assembly of organometallic gold(I) rings and [2]catenanes. Organometallics 24, 5004–5014 (2005).
doi: 10.1021/om050588o
Jiang, J.-J. et al. Structural disorder and transformation in crystal growth: direct observation of ring-opening isomerization in a metal-organic solid solution. IUCrJ 1, 318–327 (2014).
doi: 10.1107/S2052252514015966
pubmed: 25295173
pmcid: 4174874
James, S. L. Tackling a difficult question: how do crystals of coordination polymers form? IUCrJ 1, 263–264 (2014).
doi: 10.1107/S2052252514018624
pubmed: 25295167
pmcid: 4174868
Singh, J. et al. The first quantitative synthesis of a closed three-link chain (6
doi: 10.1021/jacs.0c01406
pubmed: 32325000
ADF 2020. SCM, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com (2020).
Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015).
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
doi: 10.1107/S0021889808042726
Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. C71, 9–18 (2015).