Feasibility, accuracy, and usability analysis of MapAML, a first-in-class app for integrated diagnosis in acute myeloid leukemia.

diagnosis hematology leukemia, myeloid, acute medical informatics applications mobile applications

Journal

European journal of haematology
ISSN: 1600-0609
Titre abrégé: Eur J Haematol
Pays: England
ID NLM: 8703985

Informations de publication

Date de publication:
Apr 2024
Historique:
revised: 04 12 2023
received: 21 10 2023
accepted: 05 12 2023
pubmed: 4 1 2024
medline: 4 1 2024
entrez: 3 1 2024
Statut: ppublish

Résumé

Performing a comprehensive diagnosis of acute myeloid leukemia (AML) is complex and involves the integration of clinical information, bone marrow morphology, immunophenotyping, cytogenetic, and molecular analysis, which can be challenging to the general hematologist. The aim of this study was to evaluate the usability and accuracy of MapAML, a smartphone app for integrated diagnosis in AML, created to aid the hematologist in its clinical practice. App performance was evaluated in dedicated sessions, in which 21 hematologists or fellows in hematology performed an integrated diagnosis of deidentified real-world clinical AML cases, first without and posteriorly with MapAML use. Diagnosis accuracy increased after MapAML utilization, with the average score going from 7.08 without app to 8.88 with app use (on a scale from 0 to 10), representing a significant accuracy improvement (p = .002). Usability evaluation was very favorable, with 81% of users considering the app very or extremely simple to use. There was also a significant increase in confidence to perform a complete and accurate diagnosis in AML after app use, with 61.9% of the participants willing to use the app in their clinical practice. In this study, MapAML increased accuracy with excellent usability for integrated diagnosis in AML.

Identifiants

pubmed: 38168871
doi: 10.1111/ejh.14158
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

633-640

Informations de copyright

© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Gould MK, Huang BZ, Tammemagi MC, Kinar Y, Shiff R. Machine learning for early lung cancer identification using routine clinical and laboratory data. Am J Respir Crit Care Med. 2021;204(4):445-453. doi:10.1164/rccm.202007-2791OC
Fox CW, Paine CET, Sauterey B. Citations increase with manuscript length, author number, and references cited in ecology journals. Ecol Evol. 2016;6(21):7717-7726. doi:10.1002/ece3.2505
Mariani M, He S, McHugh M, et al. Integrated multidimensional analysis is required for accurate prognostic biomarkers in colorectal cancer. PloS One. 2014;9(7):e101065. doi:10.1371/journal.pone.0101065
Datoguia TS, Velloso EDRP, Helman R, et al. Overall survival of Brazilian acute myeloid leukemia patients according to the European LeukemiaNet prognostic scoring system: a cross-sectional study. Med Oncol. 2018;35(11):141. doi:10.1007/s12032-018-1179-3
Haferlach T, Schmidts I. The power and potential of integrated diagnostics in acute myeloid leukaemia. Br J Haematol. 2020;188(1):36-48. doi:10.1111/bjh.16360
Huber S, Baer C, Hutter S, et al. AML classification in the year 2023: how to avoid a Babylonian confusion of languages. Leukemia. 2023;37(7):1413-1420. doi:10.1038/s41375-023-01909-w
Watson HA, Tribe RM, Shennan AH. The role of medical smartphone apps in clinical decision-support: a literature review. Artif Intell Med. 2019;100:101707. doi:10.1016/j.artmed.2019.101707
Gordon WJ, Landman A, Zhang H, Bates DW. Beyond validation: getting health apps into clinical practice. NPJ Digit Med. 2020;3:14. doi:10.1038/s41746-019-0212-z
Schoemans HM, Goris K, Van Durm R, et al. Accuracy and usability of the eGVHD app in assessing the severity of graft-versus-host disease at the 2017 EBMT annual congress. Bone Marrow Transplant. 2018;53(4):490-494. doi:10.1038/s41409-017-0017-0
Schoemans H, Goris K, Durm RV, et al. Development, preliminary usability and accuracy testing of the EBMT ‘eGVHD App’ to support GvHD assessment according to NIH criteria-a proof of concept. Bone Marrow Transplant. 2016;51(8):1062-1065. doi:10.1038/bmt.2016.26
Serdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. World Health Organization; 2017.
Li W. Chapter 1. The 5th edition of the World Health Organization classification of hematolymphoid tumors. In: Li W, ed. Leukemia. Exon Publications; 2022.
Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345-1377. doi:10.1182/blood.2022016867
Maramba I, Chatterjee A, Newman C. Methods of usability testing in the development of eHealth applications: a scoping review. Int J Med Inform. 2019;126:95-104. doi:10.1016/j.ijmedinf.2019.03.018
Campregher PV, Mattos VRP, Salvino MA, Santos FPS, Hamerschlak N. Successful treatment of post-transplant relapsed acute myeloid leukemia with FLT3 internal tandem duplication using the combination of induction chemotherapy, donor lymphocyte infusion, sorafenib and azacitidine. Report of three cases. Einstein. 2017;15(3):355-358. doi:10.1590/S1679-45082017RC3784
Campregher PV, Halley NDS, Vieira GA, et al. Identification of a novel fusion TBL1XR1-PDGFRB in a patient with acute myeloid leukemia harboring the DEK-NUP214 fusion and clinical response to dasatinib. Leuk Lymphoma. 2017;58(12):2969-2972. doi:10.1080/10428194.2017.1318437
Mifsud J. Usability Testing Of Mobile Applications: A Step-By-Step Guide. Usability Geek. 2020.
Schnall R, Cho H, Liu J. Health information Technology Usability Evaluation Scale (Health-ITUES) for usability assessment of mobile health technology: validation study. JMIR Mhealth Uhealth. 2018;6(1):e4. doi:10.2196/mhealth.8851
Zhou L, Bao J, Setiawan IMA, Saptono A, Parmanto B. The mHealth App Usability Questionnaire (MAUQ): development and validation study. JMIR Mhealth Uhealth. 2019;7(4):e11500. doi:10.2196/11500
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2014;13:8-17. doi:10.1016/j.csbj.2014.11.005
Eckardt JN, Bornhäuser M, Wendt K, Middeke JM. Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv. 2020;4(23):6077-6085. doi:10.1182/bloodadvances.2020002997
Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200-1228. doi:10.1182/blood.2022015850

Auteurs

Thaís B Moyen (TB)

Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein (Rua Rubens do Amaral), São Paulo, São Paulo, Brazil.

Victoria Tomaz (V)

Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil.

Paulo V Campregher (PV)

Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil.

Classifications MeSH