Targeted elimination of molybdenum ions from a leaching solution with the ability of radiated grafting GMA-PAN nanofibers.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 Jan 2024
02 Jan 2024
Historique:
received:
30
07
2023
accepted:
21
12
2023
medline:
4
1
2024
pubmed:
4
1
2024
entrez:
3
1
2024
Statut:
epublish
Résumé
In this study, electrospun polyacrylonitrile nanofibers were effectively functionalized for enhanced molybdenum ion adsorption through a multi-step approach. Initially, glycidyl methacrylate was grafted onto the nanofibers via irradiation-induced grafting polymerization, followed by chemical modification with various amino groups, with triethylamine identified as the optimal modifier. The impacts of key synthesis parameters and reaction conditions on grafting level and adsorption capacity were thoroughly investigated, with a focus on achieving maximum efficiency. The resulting nanofibers were characterized using FTIR, SEM, and BET techniques, confirming the successful modification and structural features conducive to adsorption. Furthermore, a comprehensive experimental design, incorporating a central composite design, yielded optimal conditions for molybdenum adsorption, with key parameters including monomer concentration, irradiation dose, adsorbent mass, initial concentration, time, pH, temperature, and amine concentration. The adsorption kinetics were effectively described by the pseudo-second-order model, while the Langmuir isotherm model provided valuable insight into the adsorption behavior. Impressively, the adsorbent exhibited exceptional adsorption efficiency, surpassing 98% even after six adsorption-desorption cycles using 0.5 M HCl. Thermodynamic analysis revealed the exothermic nature of the adsorption process, along with decreased entropy and overall spontaneity, underlining the favorable conditions for molybdenum adsorption. Notably, the synthesized adsorbent demonstrated notable selectivity for molybdenum and achieved an impressive adsorption capacity of 109.79 mg/g, highlighting its potential for practical applications in molybdenum removal from aqueous solutions.
Identifiants
pubmed: 38168917
doi: 10.1038/s41598-023-50608-0
pii: 10.1038/s41598-023-50608-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
252Informations de copyright
© 2024. The Author(s).
Références
Pathak, S. K., Singh, S. K., Mahtele, A. & Tripathi, S. C. Studies on extraction behaviour of molybdenum (VI) from acidic radioactive waste using 2(ethylhexyl) phosphonic acids, mono 2(ethylhexyl) ester (PC-88A)/n-dodecane. J. Radioanal. Nucler Chem. 284(3), 597–603 (2010).
doi: 10.1007/s10967-010-0511-y
Atia, A. A., Donia, A. M. & Awed, H. A. Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions. J. Hazard. Mater. 155(1), 100–108 (2008).
pubmed: 18177999
doi: 10.1016/j.jhazmat.2007.11.035
Wang, D., Aller, R. C. & Sañudo-Wilhelmy, S. A. A new method for the quantification of different redox-species of molybdenum (V and VI) in seawater. Marine Chem. 113(3), 250–256 (2009).
doi: 10.1016/j.marchem.2009.02.007
Namasivayam, C. & Sangeetha, D. Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Bioresour. Technol. 97(10), 1194–1200 (2006).
pubmed: 16006123
doi: 10.1016/j.biortech.2005.05.008
Paul, M. L. et al. Studies on Cr(VI) removal from aqueous solutions by Nanoalumina. Ind. Eng. Chem. Res. 51(46), 15242–15250 (2012).
doi: 10.1021/ie302140a
Fallah, N., Taghizadeh, M. & Hassanpour, S. Selective adsorption of Mo (VI) ions from aqueous solution using a surface-grafted Mo (VI) ion imprinted polymer. Polymer. 144, 80–91 (2018).
doi: 10.1016/j.polymer.2018.04.043
Shin, I. H., Hong, S., Lim, S. J., Son, Y.-S. & Kim, T.-H. Surface modification of PVDF membrane by radiation-induced graft polymerization for novel membrane bioreactor. J. Ind. Eng. Chem. 46, 103–110 (2017).
doi: 10.1016/j.jiec.2016.10.020
Kim, M. & Saito, K. Preparation of silver-ion-loaded nonwoven fabric by radiation-induced graft polymerization. React. Funct. Poly. 40(3), 275–279 (1999).
doi: 10.1016/S1381-5148(98)00050-9
Kim, M. & Saito, K. Radiation-induced graft polymerization and sulfonation of glycidyl methacrylate on to porous hollow-fiber membranes with different pore sizes. Radiat. Phys. Chem. 57, 167–172 (2000).
doi: 10.1016/S0969-806X(99)00314-X
Ting, T. M., Nasef, M. M. & Hashim, K. Modification of nylon-6 fibres by radiation-induced graft polymerisation of vinylbenzyl chloride. Radiat. Phys. Chem. 109, 54–62 (2015).
doi: 10.1016/j.radphyschem.2014.12.010
Madrid, J., Nuesca, G. & Abad, L. V. Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiat. Phys. Chem. 85, 182–188 (2013).
doi: 10.1016/j.radphyschem.2012.10.006
Pasanphan, W., Rattanawongwiboon, T., Rimdusit, P. & Piroonpan, T. Radiation-induced graft copolymerization of poly(ethylene glycol) monomethacrylate onto deoxycholate-chitosan nanoparticles as a drug carrier. Radiat. Phys. Chem. 94, 199–204 (2014).
doi: 10.1016/j.radphyschem.2013.06.026
Türkmen, D., Yılmaz, E., Öztürk, N., Akgöl, S. & Denizli, A. Poly(hydroxyethyl methacrylate) nanobeads containing imidazole groups for removal of Cu(II) ions. Mater. Sci. Eng. 29(6), 2072–2078 (2009).
doi: 10.1016/j.msec.2009.04.005
Liu, X., Hu, Q., Fang, Z., Zhang, X. & Zhang, B. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir. 25(1), 3–8 (2009).
pubmed: 19032060
doi: 10.1021/la802754t
Huang, S. H. & Chen, D. H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard Mater. 163(1), 174–179 (2009).
pubmed: 18657903
doi: 10.1016/j.jhazmat.2008.06.075
Saeed, K., Haider, S., Oh, T.-J. & Park, S.-Y. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 322(2), 400–405 (2008).
doi: 10.1016/j.memsci.2008.05.062
Feng, L. et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew. Chem. Int. Edition. 41(7), 1221–1223 (2002).
doi: 10.1002/1521-3773(20020402)41:7<1221::AID-ANIE1221>3.0.CO;2-G
Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science. 295(5564), 2418–2421 (2002).
pubmed: 11923529
doi: 10.1126/science.1070821
Ma, P. X. & Zhang, R. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. 46(1), 60–72 (1999).
doi: 10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H
Ondarçuhu, T. & Joachim, C. Drawing a single nanofibre over hundreds of microns. Europhys. Lett. 42(2), 215 (1998).
doi: 10.1209/epl/i1998-00233-9
Fong H. Electrospinning and the formation of nanofibers. Struct. Form. Polym. Fibers. (2001).
Deitzel, J. M., Kleinmeyer, J. D., Hirvonen, J. K. & Tan, N. B. Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer. 42(19), 8163–8170 (2001).
doi: 10.1016/S0032-3861(01)00336-6
Pereao, O., Bode-Aluko, C., Laatikainen, K., Nechaev, A. & Petrik, L. Morphology, modification and characterisation of electrospun polymer nanofiber adsorbent material used in metal ion removal. J. Polym. Environ. 27(9), 1843–1860 (2019).
doi: 10.1007/s10924-019-01497-w
Yang, Q. et al. Functionalized polyacrylonitrile fibers with durable antibacterial activity and superior Cu(II)-removal performance. Mater. Chem. Phys. 245, 122755 (2020).
doi: 10.1016/j.matchemphys.2020.122755
Nataraj, S. K., Yang, K. S. & Aminabhavi, T. M. Polyacrylonitrile-based nanofibers—A state-of-the-art review. Progress Polym. Sci. 37(3), 487–513 (2012).
doi: 10.1016/j.progpolymsci.2011.07.001
Tourzani, A. A., Hormozi, F., Asadollahzadeh, M. & Torkaman, R. Effective CO
pubmed: 37061577
pmcid: 10105707
doi: 10.1038/s41598-023-33036-y
Chen, G., Fang, D., Wang, K., Nie, J. & Ma, G. Core–shell structure PEO/CS nanofibers based on electric field induced phase separation via electrospinning and its application. J. Polym. Sci. Part A Polym. Chem. 53(19), 2298–2311 (2015).
doi: 10.1002/pola.27702
Boamah, P. O. et al. Sorption of heavy metal ions onto carboxylate chitosan derivatives—A mini-review. Ecotoxicol. Environ. Safety. 116, 113–120 (2015).
pubmed: 25791666
doi: 10.1016/j.ecoenv.2015.01.012
Saito, K. & Sugo, T. High-performance polymeric materials for separation and reaction, prepared by radiation-induced graft polymerization. Studies in physical and theoretical chemistry. Elsevier 87, 671–704 (2001).
Imanian, Z. et al. CO2 adsorption-desorption in batch and continuous conditions by using a nano-fibrous polyacrylonitrile radiation grafted adsorbent under response surface methodology. J. Util. 73, 102506 (2023).
doi: 10.1016/j.jcou.2023.102506
Ibrahim, A. G., Saleh, A. S., Elsharma, E. M., Metwally, E. & Siyam, T. Chitosan-g-maleic acid for effective removal of copper and nickel ions from their solutions. Inter. J. Biol. Macromol. 121, 1287–1294 (2019).
doi: 10.1016/j.ijbiomac.2018.10.107
Saleh, A. S. et al. Preparation of poly (chitosan-acrylamide) flocculant using gamma radiation for adsorption of Cu (II) and Ni (II) ions. Radiat. Phys. Chem. 134, 33–39 (2017).
doi: 10.1016/j.radphyschem.2017.01.019
Saleh, A. S., Ibrahim, A. G., Elsharma, E. M., Metwally, E. & Siyam, T. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co (II) from aqueous solutions. Radiat. Phys. Chem. 144, 116–124 (2018).
doi: 10.1016/j.radphyschem.2017.11.018
Ballantine, D., Glines, A., Adler, G. & Metz, D. J. Graft copolymerization by pre-irradiation technique. J. Polym. Sci. 34(127), 419–438 (1959).
doi: 10.1002/pol.1959.1203412732
Chen, X. et al. Radiation grafting of glycidyl methacrylate and divinylbenzene onto polyethylene terephthalate fabrics for improving anti-dripping performance. Radiat. Phys. Chem. 127, 256–263 (2016).
doi: 10.1016/j.radphyschem.2016.07.019
Güven, O. Established and emerging applications of radiation-induced graft polymerization. Appl. Ioniz. Radiat. Mater. Process. 2, 355–373 (2017).
Dong, Z. et al. Recent progress in environmental applications of functional adsorbent prepared by radiation techniques: A review. J. Hazard. Mater. 424, 126887 (2022).
pubmed: 34763925
doi: 10.1016/j.jhazmat.2021.126887
Grasselli, M. & Smolko, E. Designing protein adsorptive materials by simultaneous radiation-induced grafting polymerization: A review. Radiat. Phys. Chem. 194, 110055 (2022).
doi: 10.1016/j.radphyschem.2022.110055
Imanian, Z., Hormozi, F., Torab-Mostaedi, M. & Asadollahzadeh, M. Highly selective adsorbent by gamma radiation-induced grafting of glycidyl methacrylate on polyacrylonitrile/polyurethane nanofiber: Evaluation of CO2 capture. Sep. Purif. Technol. 289, 120749 (2022).
doi: 10.1016/j.seppur.2022.120749
Choi, S.-H. & Nho, Y. C. Electrochemical properties of polyethylene membrane modified with sulfonic and phosphonic acid groups. Korean J. Chem. Engi. 16(6), 725–730 (1999).
doi: 10.1007/BF02698343
Ishihara, R. Design of capture materials utilizing radiation-induced graft polymerization. Kobunshi Ronbunshu. 75(5), 456–467 (2018).
doi: 10.1295/koron.2018-0015
Atia, A. A., Donia, A. M. & Yousif, A. M. Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Sep. Purif. Technol. 61(3), 348–357 (2008).
doi: 10.1016/j.seppur.2007.11.008
Wang, J. et al. Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J. Colloid Inter. Sci. 440, 32–38 (2015).
doi: 10.1016/j.jcis.2014.10.035
Maleki, F., Gholami, M., Torkaman, R., Torab-Mostaedi, M. & Asadollahzadeh, M. Influence of phosphonic acid as a functional group on the adsorption behavior of radiation grafted polypropylene fabrics for Co (II) removal. Radat. Phys. Chem. 192, 109886 (2022).
doi: 10.1016/j.radphyschem.2021.109886
Yu, X., Wei, C. & Wu, H. Effect of molecular structure on the adsorption behavior of cationic dyes onto natural vermiculite. Sep. Purif. Technol. 156, 489–495 (2015).
doi: 10.1016/j.seppur.2015.10.039
Yang, J. et al. Optimization of polyvinylamine-modified nanocellulose for chlorpyrifos adsorption by central composite design. Carbohydr. Polym. 245, 116542 (2020).
pubmed: 32718637
doi: 10.1016/j.carbpol.2020.116542
Karoui, S. et al. Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: Central composite design, kinetic and isotherm studies using Brouers-Sotolongo family models. J. Hazard. Mater. 387, 121675 (2020).
pubmed: 31767503
doi: 10.1016/j.jhazmat.2019.121675
Heydari, A., Asl, A. H., Asadollahzadeh, M. & Torkaman, R. Optimization of synthesis conditions for preparation of radiation grafted polymeric fibers and process variables of adsorption with response surface methodology. Prog. Nucl. Energy. 155, 104468 (2023).
doi: 10.1016/j.pnucene.2022.104468
Maleki, F., Gholami, M., Torkaman, R., Torab-Mostaedi, M. & Asadollahzadeh, M. Cobalt (II) removal from aqueous solution by modified polymeric adsorbents prepared with induced-graft polymerization: Batch and continuous column study with analysis of breakthrough behaviors. Environ. Technol. Innov. 24, 102054 (2021).
doi: 10.1016/j.eti.2021.102054
Javadian, H., Ruiz, M. & Sastre, A. M. Response surface methodology based on central composite design for simultaneous adsorption of rare earth elements using nanoporous calcium alginate/carboxymethyl chitosan microbiocomposite powder containing Ni0.2Zn0.2Fe2.6O4 magnetic nanoparticles: Batch and column studies. Inter. J. Biol. Macromol. 154, 937–953 (2020).
doi: 10.1016/j.ijbiomac.2020.03.131
Dehghani, M. H. et al. Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling. Sci. Rep. 11(1), 1–15 (2021).
doi: 10.1038/s41598-021-91178-3
Garg, U. K., Kaur, M. P., Garg, V. K. & Sud, D. Removal of nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour. Technol. 99(5), 1325–1331 (2008).
pubmed: 17383868
doi: 10.1016/j.biortech.2007.02.011
Maleki, F., Torkaman, R., Torab-Mostaedi, M. & Asadollahzadeh, M. Optimization of grafted fibrous polymer preparation procedure as a new solid basic catalyst for biodiesel fuel production from palm oil. Fuel. 329, 125015 (2022).
doi: 10.1016/j.fuel.2022.125015
Torkaman, R., Maleki, F., Gholami, M., Torab-Mostaedi, M. & Asadollahzadeh, M. Assessing the radiation-induced graft polymeric adsorbents with emphasis on heavy metals removing: A systematic literature review. J. Water Process Eng. 44, 102371 (2021).
doi: 10.1016/j.jwpe.2021.102371
Yang, Y., Ma, N., Zhang, Q. & Chen, S. Adsorption of Hg2+ on a novel chelating fiber prepared by preirradiation grafting and amination. J. Appl. Polym. Sci. 113(6), 3638–3645 (2009).
doi: 10.1002/app.30355
Abbasi, A. et al. Carbon dioxide adsorption on grafted nanofibrous adsorbents functionalized using different amines. Front. Energy Res. 10(7), 145 (2019).
doi: 10.3389/fenrg.2019.00145
Choi, S. H., Nho, Y. C. & Kim, G. T. Adsorption of Pb
doi: 10.1002/(SICI)1097-4628(19990124)71:4<643::AID-APP16>3.0.CO;2-8
Abbasi, A. et al. Carbon dioxide adsorption on grafted nanofibrous adsorbents functionalized using different amines. Front. Energy Res. 7, 145 (2019).
doi: 10.3389/fenrg.2019.00145
Kincl, M., Turk, S. & Vrečer, F. Application of experimental design methodology in development and optimization of drug release method. Inter. J. Pharm. 291(1), 39–49 (2005).
doi: 10.1016/j.ijpharm.2004.07.041
Goel, J., Kadirvelu, K., Rajagopal, C. & Garg, V. K. Cadmium(II) uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach. Ind. Eng. Chem. Res. 45(19), 6531–6537 (2006).
doi: 10.1021/ie060010u
Montgomery D, St C. Design and Analysis of Experiments, 9th Edition, (2022).
Cojocaru, C. & Zakrzewska-Trznadel, G. Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration. J. Membr. Sci. 298(1), 56–70 (2007).
doi: 10.1016/j.memsci.2007.04.001
Kalavathy, H., Regupathi, I., Pillai, M. G. & Miranda, L. R. Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids Surf. B Biointerfaces. 70(1), 35–45 (2009).
pubmed: 19155164
doi: 10.1016/j.colsurfb.2008.12.007
Hashim, K. S. et al. Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies. Water Sci. Technol. 83(1), 77–89 (2021).
pubmed: 33460408
doi: 10.2166/wst.2020.561
Deng, S. & Bai, R. Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water Res. 38(9), 2424–2432 (2004).
doi: 10.1016/j.watres.2004.02.024
Chen, C. Y., Lin, M. S. & Hsu, K. R. Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups. J. Hazard. Mater. 152(3), 986–993 (2008).
pubmed: 17804161
doi: 10.1016/j.jhazmat.2007.07.074
Gad, Y. H. & Elbarbary, A. M. Radiation synthesis of Fe3O4/SiO2/glycidyl methacrylate/acrylonitrile nanocomposite for adsorption of basic violet 7 dye: Kinetic, isotherm, and thermodynamic study. Appl. Organomet. Chem. 35(7), e6258 (2021).
doi: 10.1002/aoc.6258
Hamed, M. M., Rizk, H. & Ahmed, I. Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent. J. Mol. Liq. 249, 361–370 (2018).
doi: 10.1016/j.molliq.2017.11.049
Dessouki, A. M., El-Tahawy, M., El-boohy, H., El-Mongy, S. A. & Badawy, S. M. Chemical reactive filter paper prepared by radiation-induced graft polymerization—I. Radiat. Phys. Chem. 54, 627–635 (1999).
doi: 10.1016/S0969-806X(98)00288-6
Sokker, H. H., Badawy, S. M., Zayed, E. M., Eldien, F. A. N. & Farag, A. M. Radiation-induced grafting of glycidyl methacrylate onto cotton fabric waste and its modification for anchoring hazardous wastes from their solutions. J. Hazard. Mater. 168(1), 137–144 (2009).
pubmed: 19297095
doi: 10.1016/j.jhazmat.2009.02.039
Sar, P., Kazy, S. K. & D’Souza, S. Radionuclide remediation using a bacterial biosorbent. Inter. Biodeterior. Biodegrad. 54(2–3), 193–202 (2004).
doi: 10.1016/j.ibiod.2004.05.004
Choi, J., Lee, J. Y. & Yang, J. S. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. J Hazard Mater. 161(1), 157–162 (2009).
pubmed: 18448246
doi: 10.1016/j.jhazmat.2008.03.065
Maleki, F., Gholami, M., Torkaman, R., Torab-Mostaedi, M. & Asadollahzadeh, M. Multivariate optimization of removing of cobalt (II) with an efficient aminated-GMA polypropylene adsorbent by induced-grafted polymerization under simultaneous gamma-ray irradiation. Sci. Rep. 11(1), 1–22 (2021).
doi: 10.1038/s41598-021-97826-y
Thompson WT, Lewis BJ, Morrison C, Webb M, Akbari F. Pourbaix diagrams for uranium, molybdenum and technetium. Paper presented at: 8th International conference on CANDU fuel Conference proceedings, Canada. (2003)
Jawad, A. H., Norrahma, S. S. A., Hameed, B. H. & Ismail, K. Chitosan-glyoxal film as a superior adsorbent for two structurally different reactive and acid dyes: Adsorption and mechanism study. Inter. J. Biol. Macromol. 135, 569–581 (2019).
doi: 10.1016/j.ijbiomac.2019.05.127
Kotrba, P. Microbial biosorption of metals—general introduction 1–6 (Springer, 2011).
Dotto, G. L., Buriol, C. & Pinto, L. A. Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chem. Eng. Res. Des. 92(11), 2324–2332 (2014).
doi: 10.1016/j.cherd.2014.03.013
Lalia, B. S., Kochkodan, V., Hashaikeh, R. & Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination. 326, 77–95 (2013).
doi: 10.1016/j.desal.2013.06.016
Kampalanonwat, P. & Supaphol, P. Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl. Mater. Interfaces. 2(12), 3619–3627 (2010).
pubmed: 21117629
doi: 10.1021/am1008024
Bozkaya, O., Günay, K., Arslan, M. & Gün, G. Z. Removal of anionic dyes with glycidyl methacrylate-grafted polyethylene terephthalate (PET) fibers modified with ethylenediamine. Res. Chem. Intermed. 47, 2075–2093 (2021).
doi: 10.1007/s11164-021-04398-7
Xiao, H. et al. Separation of vanadium, tungsten and molybdenum from spent SCR catalysts solution by solvent extraction with primary amine N1923. Waste Manag. 150, 301–309 (2022).
pubmed: 35878529
doi: 10.1016/j.wasman.2022.07.015
Jeun, J. P., Hua, Z. J., Kang, P. H. & Nho, Y. C. Electron-beam-radiation-induced grafting of acrylonitrile onto polypropylene fibers: Influence of the synthesis conditions. J. Appl. Polym. Sci. 115(1), 222–228 (2010).
doi: 10.1002/app.31062
Lowell S, Shields JE, Thomas MA, Thommes M. Characterization of porous solids and powders: surface area, pore size and density. Vol 16: Springer Science & Business Media; (2006).
Bozkaya, O., Arat, E., Gök, Z. G., Yiğitoğlu, M. & Vargel, I. Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. Eur. Polym. J. 166, 111023 (2022).
doi: 10.1016/j.eurpolymj.2022.111023
Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015).
doi: 10.1515/pac-2014-1117
Chen, L. & Bai, B. Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres. Ind. Eng. Chem. Res. 52(44), 15568–15577 (2013).
doi: 10.1021/ie4020364
Hamed, M. M., Holiel, M. & Ismail, Z. H. Removal of 134Cs and 152+154Eu from liquid radioactive waste using Dowex HCR-S/S. Radiochim. Acta. 104(6), 399–413 (2016).
doi: 10.1515/ract-2015-2514
Inyinbor, A. A., Adekola, F. A. & Olatunji, G. A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind. 15, 14–27 (2016).
doi: 10.1016/j.wri.2016.06.001
Yuh-Shan, H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics. 59(1), 171–177 (2004).
doi: 10.1023/B:SCIE.0000013305.99473.cf
Weber, W. J. & Morris, J. C. Kinetics of adsorption on carbon from solution. J. Sanitary Eng. Div. 89(2), 31–59 (1963).
doi: 10.1061/JSEDAI.0000430
Elkony, A. M., Ibrahim, A. G., Abu El-Farh, M. H. & Abdelhai, F. Synthesis of acrylamide-co-3-Allyloxy-2-hydroxy-1-propanesulfonic acid sodium salt hydrogel for efficient adsorption of methylene blue dye. Inter. J. Environ. Anal. Chem. 103(8), 1751–1770 (2023).
doi: 10.1080/03067319.2021.1882447
Ibrahim, A. G., Sayed, A. Z., Abd El-Wahab, H. & Sayah, M. M. Synthesis of a hydrogel by grafting of acrylamide-co-sodium methacrylate onto chitosan for effective adsorption of Fuchsin basic dye. Inter. J. Biol. Macromol. 159, 422–432 (2020).
doi: 10.1016/j.ijbiomac.2020.05.039