The neuropsychopharmacology of acetyl-L-carnitine (LAC): basic, translational and therapeutic implications.

Cognition Depression Glutamate Hippocampus Histone acetylation

Journal

Discover mental health
ISSN: 2731-4383
Titre abrégé: Discov Ment Health
Pays: Switzerland
ID NLM: 9918350483906676

Informations de publication

Date de publication:
02 Jan 2024
Historique:
received: 21 08 2023
accepted: 15 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

Mitochondrial metabolism can contribute to nuclear histone acetylation among other epigenetic mechanisms. A central aspect of this signaling pathway is acetyl-L-carnitine (LAC), a pivotal mitochondrial metabolite best known for its role in fatty acid oxidation. Work from our and other groups suggested LAC as a novel epigenetic modulator of brain plasticity and a therapeutic target for clinical phenotypes of depression linked to childhood trauma. Aberrant mitochondrial metabolism of LAC has also been implicated in the pathophysiology of Alzheimer's disease. Furthermore, mitochondrial dysfunction is linked to other processes implicated in the pathophysiology of both major depressive disorders and Alzheimer's disease, such as oxidative stress, inflammation, and insulin resistance. In addition to the rapid epigenetic modulation of glutamatergic function, preclinical studies showed that boosting mitochondrial metabolism of LAC protects against oxidative stress, rapidly ameliorates insulin resistance, and reduces neuroinflammation by decreasing proinflammatory pathways such as NFkB in hippocampal and cortical neurons. These basic and translational neuroscience findings point to this mitochondrial signaling pathway as a potential target to identify novel mechanisms of brain plasticity and potential unique targets for therapeutic intervention targeted to specific clinical phenotypes.

Identifiants

pubmed: 38169018
doi: 10.1007/s44192-023-00056-z
pii: 10.1007/s44192-023-00056-z
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

2

Subventions

Organisme : NIH HHS
ID : R01MH128311
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

McEwen BS, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63. https://doi.org/10.1038/nn.4086 .
doi: 10.1038/nn.4086 pubmed: 26404710 pmcid: 4933289
Nestler EJ. Epigenetic mechanisms of depression. JAMA Psychiatry. 2014;71:454–6. https://doi.org/10.1001/jamapsychiatry.2013.4291 .
doi: 10.1001/jamapsychiatry.2013.4291 pubmed: 24499927 pmcid: 4057796
Sweatt JD. Neuroscience. Epigenetics and cognitive aging. Science. 2010;328:701–2. https://doi.org/10.1126/science.1189968 .
doi: 10.1126/science.1189968 pubmed: 20448174
Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67. https://doi.org/10.1038/nrn2132 .
doi: 10.1038/nrn2132 pubmed: 17453016
Mahgoub M, Monteggia LM. Epigenetics and psychiatry. Neurotherapeutics. 2013;10:734–41. https://doi.org/10.1007/s13311-013-0213-6 .
doi: 10.1007/s13311-013-0213-6 pubmed: 24092614 pmcid: 3805856
McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci. 1998;840:33–44.
doi: 10.1111/j.1749-6632.1998.tb09546.x pubmed: 9629234
Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41:10–3. https://doi.org/10.1093/ije/dyr184 .
doi: 10.1093/ije/dyr184 pubmed: 22186258
Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563–5. https://doi.org/10.1038/150563a0 .
doi: 10.1038/150563a0
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500. https://doi.org/10.1038/nrg.2016.59 .
doi: 10.1038/nrg.2016.59 pubmed: 27346641
Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81:484–503.
doi: 10.1016/j.neuron.2014.01.027 pubmed: 24507187 pmcid: 3919201
Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60:1187–92. https://doi.org/10.1001/archpsyc.60.12.1187 .
doi: 10.1001/archpsyc.60.12.1187 pubmed: 14662550
Lichtenstein P, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373:234–9. https://doi.org/10.1016/S0140-6736(09)60072-6 .
doi: 10.1016/S0140-6736(09)60072-6 pubmed: 19150704
Agrawal A, et al. The genetics of addiction—a translational perspective. Transl Psychiatry. 2012;2:e140–e140. https://doi.org/10.1038/tp.2012.54 .
doi: 10.1038/tp.2012.54 pubmed: 22806211 pmcid: 3410620
Fraga MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102:10604–9. https://doi.org/10.1073/pnas.0500398102 .
doi: 10.1073/pnas.0500398102 pubmed: 16009939 pmcid: 1174919
Angold A, Costello EJ, Worthman CM. Puberty and depression: the roles of age, pubertal status and pubertal timing. Psychol Med. 1998;28:51–61. https://doi.org/10.1017/s003329179700593x .
doi: 10.1017/s003329179700593x pubmed: 9483683
Whiteford HA, et al. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet. 2013;382:1575–86. https://doi.org/10.1016/s0140-6736(13)61611-6 .
doi: 10.1016/s0140-6736(13)61611-6 pubmed: 23993280
Akil H, et al. Treatment resistant depression: a multi-scale, systems biology approach. Neurosci Biobehav Rev. 2018;84:272–88. https://doi.org/10.1016/j.neubiorev.2017.08.019 .
doi: 10.1016/j.neubiorev.2017.08.019 pubmed: 28859997
McEwen BS. Redefining neuroendocrinology: epigenetics of brain-body communication over the life course. Front Neuroendocrinol. 2018;49:8–30. https://doi.org/10.1016/j.yfrne.2017.11.001 .
doi: 10.1016/j.yfrne.2017.11.001 pubmed: 29132949
Davidson RJ, McEwen BS. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci. 2012;15:689–95.
doi: 10.1038/nn.3093 pubmed: 22534579 pmcid: 3491815
Nasca C, Bigio B, Zelli D, Nicoletti F, McEwen BS. Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility. Mol Psychiatry. 2015;20:755–63. https://doi.org/10.1038/mp.2014.96 .
doi: 10.1038/mp.2014.96 pubmed: 25178162
Miller MM, Morrison JH, McEwen BS. Basal anxiety-like behavior predicts differences in dendritic morphology in the medial prefrontal cortex in two strains of rats. Behav Brain Res. 2012;229:280–8. https://doi.org/10.1016/j.bbr.2012.01.029 .
doi: 10.1016/j.bbr.2012.01.029 pubmed: 22285422
Cavigelli SA, McClintock MK. Fear of novelty in infant rats predicts adult corticosterone dynamics and an early death. Proc Natl Acad Sci USA. 2003;100:16131–6.
doi: 10.1073/pnas.2535721100 pubmed: 14673078 pmcid: 307704
Brydges NM, et al. Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood. Brain Behav. 2014;4:4–13.
doi: 10.1002/brb3.182 pubmed: 24653949
Schousboe A. International review of neurobiology. Cambridge: Academic Press; 1981.
McEwen BS, Gray J, Nasca C. Recognizing resilience: learning from the effects of stress on the brain. Neurobiol Stress. 2015;1:1–11. https://doi.org/10.1016/j.ynstr.2014.09.001 .
doi: 10.1016/j.ynstr.2014.09.001 pubmed: 25506601
McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41:3–23. https://doi.org/10.1038/npp.2015.171 .
doi: 10.1038/npp.2015.171 pubmed: 26076834
Nasca C, et al. Multidimensional predictors of susceptibility and resilience to social defeat stress. Biol Psychiatry. 2019;86:483–91. https://doi.org/10.1016/j.biopsych.2019.06.030 .
doi: 10.1016/j.biopsych.2019.06.030 pubmed: 31466563 pmcid: 6730655
Pettegrew JW, Levine J, McClure RJ. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry. 2000;5:616–32.
doi: 10.1038/sj.mp.4000805 pubmed: 11126392
Fritz IB, McEwen BS. Effects of carnitine on fatty-acid oxidation by muscle. Science. 1959;129:334–5.
doi: 10.1126/science.129.3345.334 pubmed: 13624727
Nasca C, et al. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci USA. 2013;110:4804–9. https://doi.org/10.1073/pnas.1216100110 .
doi: 10.1073/pnas.1216100110 pubmed: 23382250 pmcid: 3607061
Costell M, Míguez MP, O’Connor JE, Grisolía S. Effect of hyperammonemia on the levels of carnitine in mice. Neurology. 1987;37:804–8. https://doi.org/10.1212/wnl.37.5.804 .
doi: 10.1212/wnl.37.5.804 pubmed: 3574681
Marzo A, et al. Metabolism and disposition of intravenously administered acetyl-L-carnitine in healthy volunteers. Eur J Clin Pharmacol. 1989;37:59–63. https://doi.org/10.1007/bf00609426 .
doi: 10.1007/bf00609426 pubmed: 2591464
Parnetti L, Gaiti A, Mecocci P, Cadini D, Senin U. Pharmacokinetics of IV and oral acetyl-L-carnitine in a multiple dose regimen in patients with senile dementia of Alzheimer type. Eur J Clin Pharmacol. 1992;42:89–93. https://doi.org/10.1007/bf00314926 .
doi: 10.1007/bf00314926 pubmed: 1541322
Nasca C, et al. Role of the astroglial glutamate exchanger xCT in ventral hippocampus in resilience to stress. Neuron. 2017;96:402–13. https://doi.org/10.1016/j.neuron.2017.09.020 .
doi: 10.1016/j.neuron.2017.09.020 pubmed: 29024663
Wang W, et al. Rapid-acting antidepressant-like effects of acetyl-l-carnitine mediated by PI3K/AKT/BDNF/VGF signaling pathway in mice. Neuroscience. 2015;285:281–91. https://doi.org/10.1016/j.neuroscience.2014.11.025 .
doi: 10.1016/j.neuroscience.2014.11.025 pubmed: 25463525
Cuccurazzu B, et al. Upregulation of mGlu2 receptors via NF-kappaB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine. Neuropsychopharmacology. 2013;38:2220–30. https://doi.org/10.1038/npp.2013.121 .
doi: 10.1038/npp.2013.121 pubmed: 23670591 pmcid: 3773672
Cherix A, et al. Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine. eLife. 2020;9:e50631. https://doi.org/10.7554/eLife.50631 .
doi: 10.7554/eLife.50631 pubmed: 31922486 pmcid: 6970538
Madiraju P, Pande SV, Prentki M, Madiraju SR. Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics. 2009;4:399–403.
doi: 10.4161/epi.4.6.9767 pubmed: 19755853
Kurita M, et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci. 2012;15:1245–54. https://doi.org/10.1038/nn.3181 .
doi: 10.1038/nn.3181 pubmed: 22864611 pmcid: 3431440
Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995;15:1768. https://doi.org/10.1523/JNEUROSCI.15-03-01768.1995 .
doi: 10.1523/JNEUROSCI.15-03-01768.1995 pubmed: 7891134 pmcid: 6578156
Xu H, et al. Quetiapine attenuates the immobilization stress-induced decrease of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett. 2002;321:65–8. https://doi.org/10.1016/S0304-3940(02)00034-4 .
doi: 10.1016/S0304-3940(02)00034-4 pubmed: 11872258
Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539. https://doi.org/10.1523/JNEUROSCI.15-11-07539.1995 .
doi: 10.1523/JNEUROSCI.15-11-07539.1995 pubmed: 7472505 pmcid: 6578063
Rasmusson AM, Shi L, Duman R. Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology. 2002;27:133–42. https://doi.org/10.1016/s0893-133x(02)00286-5 .
doi: 10.1016/s0893-133x(02)00286-5 pubmed: 12093587
Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50:260–5. https://doi.org/10.1016/s0006-3223(01)01083-6 .
doi: 10.1016/s0006-3223(01)01083-6 pubmed: 11522260
Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33:403–8. https://doi.org/10.1159/000116984 .
doi: 10.1159/000116984 pubmed: 8307060
Barnes CA, et al. Acetyl-1-carnitine. 2: effects on learning and memory performance of aged rats in simple and complex mazes. Neurobiol Aging. 1990;11:499–506. https://doi.org/10.1016/0197-4580(90)90110-l .
doi: 10.1016/0197-4580(90)90110-l pubmed: 2234280
Liu J, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-l-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci USA. 2002;99:2356–61. https://doi.org/10.1073/pnas.261709299 .
doi: 10.1073/pnas.261709299 pubmed: 11854529 pmcid: 122369
Nicoletti F, Bruno V, Ngomba RT, Gradini R, Battaglia G. Metabotropic glutamate receptors as drug targets: what’s new? Curr Opin Pharmacol. 2015;20:89–94. https://doi.org/10.1016/j.coph.2014.12.002 .
doi: 10.1016/j.coph.2014.12.002 pubmed: 25506748
Aan Het Rot M, Zarate CA, Charney DS Jr, Mathew SJ. Ketamine for depression: where do we go from here? Biol Psychiatry. 2012;72:537–47. https://doi.org/10.1016/j.biopsych.2012.05.003 .
doi: 10.1016/j.biopsych.2012.05.003 pubmed: 22705040 pmcid: 3438349
Zarate C Jr, et al. Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry. 2010;18:293–303. https://doi.org/10.3109/10673229.2010.511059 .
doi: 10.3109/10673229.2010.511059 pubmed: 20825266 pmcid: 3000412
Nasca C, et al. Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proc Natl Acad Sci USA. 2018;115:8627–32. https://doi.org/10.1073/pnas.1801609115 .
doi: 10.1073/pnas.1801609115 pubmed: 30061399 pmcid: 6112703
Nasca C, et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0804-7 .
doi: 10.1038/s41380-020-0804-7 pubmed: 32536688 pmcid: 7787430
Post RM. Myriad of implications of acetyl-l-carnitine deficits in depression. Proc Nat Acad Sci USA. 2018;115:8475–7. https://doi.org/10.1073/pnas.1811389115 .
doi: 10.1073/pnas.1811389115 pubmed: 30068605 pmcid: 6112732
Wu Z, et al. Non-targeted metabolomics profiling of plasma samples from patients with major depressive disorder. Front Psychiatry. 2021;12:810302.
doi: 10.3389/fpsyt.2021.810302 pubmed: 35264984
Post RM. Epigenetic basis of sensitization to stress, affective episodes, and stimulants: implications for illness progression and prevention. Bipolar Disord. 2016;18:315–24. https://doi.org/10.1111/bdi.12401 .
doi: 10.1111/bdi.12401 pubmed: 27346321
Nemeroff CB. Paradise lost: the neurobiological and clinical consequences of child abuse and neglect. Neuron. 2016;89:892–909. https://doi.org/10.1016/j.neuron.2016.01.019 .
doi: 10.1016/j.neuron.2016.01.019 pubmed: 26938439
Williams LM, Debattista C, Duchemin AM, Schatzberg AF, Nemeroff CB. Childhood trauma predicts antidepressant response in adults with major depression: data from the randomized international study to predict optimized treatment for depression. Transl Psychiatry. 2016;6:e799. https://doi.org/10.1038/tp.2016.61 .
doi: 10.1038/tp.2016.61 pubmed: 27138798 pmcid: 5070060
Kiraly DD, et al. Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry. 2017;7:e1065. https://doi.org/10.1038/tp.2017.31 .
doi: 10.1038/tp.2017.31 pubmed: 28323284 pmcid: 5416674
Rotroff DM, et al. Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: new mechanistic insights for rapid acting antidepressants. Transl Psychiatry. 2016;6:e894–e894. https://doi.org/10.1038/tp.2016.145 .
doi: 10.1038/tp.2016.145 pubmed: 27648916 pmcid: 5048196
Nasca C, et al. Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes. Neurobiol Stress. 2021;15:100407. https://doi.org/10.1016/j.ynstr.2021.100407 .
doi: 10.1016/j.ynstr.2021.100407 pubmed: 34815985 pmcid: 8592929
Zanardi R, Smeraldi E. A double-blind, randomised, controlled clinical trial of acetyl-L-carnitine vs. Amisulpride in the treatment of dysthymia. Eur Neuropsychopharmacol. 2006;16:281–7. https://doi.org/10.1016/j.euroneuro.2005.10.005 .
doi: 10.1016/j.euroneuro.2005.10.005 pubmed: 16316746
Garzya G, et al. Evaluation of the effects of L-acetylcarnitine on senile patients suffering from depression. Drugs Exp Clin Res. 1990;16:101–6.
pubmed: 2205455
Seiler SE, et al. Obesity and lipid stress inhibit carnitine acetyltransferase activity. J Lipid Res. 2014;55:635–44.
doi: 10.1194/jlr.M043448 pubmed: 24395925 pmcid: 3966698
Cristofano A, et al. Serum levels of acyl-carnitines along the continuum from normal to Alzheimer’s dementia. PLoS One. 2016;11:e0155694. https://doi.org/10.1371/journal.pone.0155694 .
doi: 10.1371/journal.pone.0155694 pubmed: 27196316 pmcid: 4873244
Thal LJ, et al. A 1-year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer’s disease. Neurology. 1996;47:705–11.
doi: 10.1212/WNL.47.3.705 pubmed: 8797468
Brooks JO 3rd, Yesavage JA, Carta A, Bravi D. Acetyl L-carnitine slows decline in younger patients with Alzheimer’s disease: a reanalysis of a double-blind, placebo-controlled study using the trilinear approach. Int Psychogeriatr. 1998;10:193–203. https://doi.org/10.1017/s1041610298005304 .
doi: 10.1017/s1041610298005304 pubmed: 9677506
Bigio B, et al. Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: implications for treatment resistance. Proc Natl Acad Sci USA. 2016;113:7906–11. https://doi.org/10.1073/pnas.1603111113 .
doi: 10.1073/pnas.1603111113 pubmed: 27354525 pmcid: 4948346
Watson K, Nasca C, Aasly L, McEwen B, Rasgon N. Insulin resistance, an unmasked culprit in depressive disorders: promises for interventions. Neuropharmacology. 2018;136:327–34. https://doi.org/10.1016/j.neuropharm.2017.11.038 .
doi: 10.1016/j.neuropharm.2017.11.038 pubmed: 29180223
Kuratsune H, et al. High uptake of [2–11C]acetyl-L-carnitine into the brain: a PET study. Biochem Biophys Res Commun. 1997;231:488–93. https://doi.org/10.1006/bbrc.1996.5919 .
doi: 10.1006/bbrc.1996.5919 pubmed: 9070306
The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580–585 (2013). https://doi.org/10.1038/ng.2653
Takahashi H, Lassmann T, Murata M, Carninci P. 5’ End-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc. 2012;7:542–61. https://doi.org/10.1038/nprot.2012.005 .
doi: 10.1038/nprot.2012.005 pubmed: 22362160 pmcid: 4094379
Uhlen M, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. https://doi.org/10.1126/science.1260419 .
doi: 10.1126/science.1260419 pubmed: 25613900
Rasgon NL, McEwen BS. Insulin resistance-a missing link no more. Mol Psychiatry. 2016;21:1648–52. https://doi.org/10.1038/mp.2016.162 .
doi: 10.1038/mp.2016.162 pubmed: 27698431
De Felice FG, Gonçalves RA, Ferreira ST. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat Rev Neurosci. 2022;23:215–30. https://doi.org/10.1038/s41583-022-00558-9 .
doi: 10.1038/s41583-022-00558-9 pubmed: 35228741
De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer’s Dementia. 2014;10:S26-32. https://doi.org/10.1016/j.jalz.2013.12.004 .
doi: 10.1016/j.jalz.2013.12.004 pubmed: 24529521
Byers AL, Yaffe K. Depression and risk of developing dementia. Nat Rev Neurol. 2011;7:323–31. https://doi.org/10.1038/nrneurol.2011.60 .
doi: 10.1038/nrneurol.2011.60 pubmed: 21537355 pmcid: 3327554
Albert PR. Why is depression more prevalent in women? J Psychiatry Neurosci. 2015;40:219–21.
doi: 10.1503/jpn.150205 pubmed: 26107348 pmcid: 4478054
Qiu J, Bosch MA, Zhang C, Rønnekleiv OK, Kelly MJ. Estradiol protects neuropeptide Y/agouti-related peptide neurons against insulin resistance in females. Neuroendocrinology. 2020;110:105–18.
doi: 10.1159/000501560 pubmed: 31212279

Auteurs

Benedetta Bigio (B)

Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.

Shofiul Azam (S)

Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.

Aleksander A Mathé (AA)

Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Carla Nasca (C)

Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA. carla.nasca@nyulangone.org.
Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA. carla.nasca@nyulangone.org.
Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA. carla.nasca@nyulangone.org.
Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA. carla.nasca@nyulangone.org.

Classifications MeSH